Functional Plant Biology Functional Plant Biology Society
Plant function and evolutionary biology
RESEARCH ARTICLE

A stochastic 1D nearest-neighbour automaton models early development of the brown alga Ectocarpus siliculosus

Bernard Billoud A D , Aude Le Bail B C and Bénédicte Charrier B C
+ Author Affiliations
- Author Affiliations

A UPMC Univ Paris 06, Atelier de Bioinformatique, MB1202, F75005 Paris, France.

B UPMC Univ Paris 06, UMR7139 Végétaux marins et biomolécules, Station Biologique, F29682 Roscoff cedex, France.

C CNRS, UMR7139 Végétaux marins et biomolécules, Station Biologique, F29682 Roscoff cedex, France.

D Corresponding author. Email: bernard.billoud@snv.jussieu.fr

This paper originates from a presentation at the 5th International Workshop on Functional–Structural Plant Models, Napier, New Zealand, November 2007.

Functional Plant Biology 35(10) 1014-1024 https://doi.org/10.1071/FP08036
Submitted: 26 February 2008  Accepted: 25 July 2008   Published: 11 November 2008

Abstract

Early development of the filamentous brown alga Ectocarpus siliculosus (Dillwyn) Lyngbye involves two cell types that are arranged in a polymorphic, but constrained, pattern. The present study aimed to decipher the cellular processes responsible for the establishment of this pattern. Thorough observations characterised five different events of division and differentiation that occurred during the early development. The hypothesis that a local control is responsible for these processes was tested. To do so, Ectomat, a stochastic automaton in which each cell only interacts with its closest neighbour(s), was created. The probabilities for the five events were adjusted to fit to the observations. Simulations with Ectomat reconstructed most of the essential properties of the sporophyte development, in terms of cell-type proportion, relative position and growth dynamics. The whole organism properties emerged by applying local transition rules. In conclusion, no global position information system was required at this development stage. Randomly occurring cell events, driven by simple contact interactions, are sufficient to account for the early filament development and establishment of the cell-type pattern of E. siliculosus.

Additional keywords: cell communication, filament, morphogenesis, multicellularity, optimisation, Phaeophyceae.


Acknowledgements

The authors thank Isabelle Gonçalves (Atelier de BioInformatique and Institut Jacques Monod, Laboratoire Structure et Dynamique du Génome) for computing facilities and Eduardo Rocha (Atelier de BioInformatique and Institut Pasteur) for valuable advice in the article redaction. The reviewers’ comments have also helped to improve the manuscript, especially regarding the bibliography. A. Le Bail was supported by a grant from the French Ministry of Research.


References


Akberdin IR, Ozonov EA, Mironova VV, Omelyanchuk NA, Likhoshvai VA, Gorpinchenko DN, Kolchanov NA (2007) A cellular automaton to model the development of primary shoot meristems of Arabidopsis thaliana. Journal of Bioinformatics and Computational Biology 5, 641–650.
CrossRef | PubMed |

Alber M , Kiskowski M , Glazier J , Jiang Y (2002) On cellular automaton approaches to modelling biological cells. In ‘IMA 134: mathematical systems theory in biology, communication, and finance’. (Eds J Rosenthal, DS Gilliam) pp. 12–50. (Springer-Verlag: New York)

Baker CTH, Bocharov GA, Paul CH, Rihan FA (1998) Modelling and analysis of time-lags in some basic patterns of cell proliferation. Journal of Mathematical Biology 37, 341–371.
CrossRef | PubMed |

Baldauf S (2003) The deep roots of eukaryotes. Science 300, 1703–1706.
CrossRef | PubMed |

Basu S, Sun H, Brian L, Quatrano RL, Muday GK (2002) Early embryo development in Fucus distichus is auxin sensitive. Plant Physiology 130, 292–302.
CrossRef | PubMed |

Bradley PM (1991) Plant hormones do have a role in controlling growth and development of algae. Journal of Phycology 27, 317–321.
CrossRef |

Charrier B, Coelho S, Le Bail A, Tonon T, Michel G, Potin P, Kloareg B, Boyen C, Peters AF, Cock JM (2008) Development and physiology of the brown alga Ectocarpus siliculosus: two centuries of research. The New Phytologist 177, 319–332.
PubMed |


Cho GY, Lee SH, Boo SM (2004) A new brown algal order, Ishigeales (Phaeophyceae), established on the basis of plastid protein-coding rbcL, psaA, and psbA region comparisons. Journal of Phycology 40, 921–936.
CrossRef |

Coelho SM, Peters AF, Charrier B, Roze D, Destombe C, Valero M, Cock JM (2007) Complex life cycles of multicellular eukaryotes: new approaches based on the use of model organisms. Gene 406, 152–170.
PubMed |


Coen E, Rolland-Lagan AG, Matthews M, Bangham JA, Prusinkiewicz P (2004) The genetics of geometry. Proceedings of the National Academy of Sciences of the United States of America 101, 4728–4735.
CrossRef | PubMed |

Corbit JD, Garbary DJ (1993) Computer simulation of the morphology and development of several species of seaweed using Lindenmayer systems. Computer Graphics 17, 85–88.
CrossRef |

Cove D (2000) The generation and the modification of cell polarity. Journal of Experimental Botany 51, 831–838.
CrossRef | PubMed |

Davis RH (2004) The age of model organisms. Nature Reviews. Genetics 5, 69–75.
CrossRef | PubMed |

de Koster CG, Lindenmayer A (1987) Discrete and continuous models for heterocyst differentiation in growing filaments of blue–green bacteria. Acta Biotheoretica 36, 249–273.
CrossRef |

Draisma SGA , Peters AF , Fletcher RL (2003) Evolution and taxonomy in the Phaephyceae: effects of the molecular age on brown algal systematics. In ‘Collected reviews to celebrate the jubilee of the British Phycological Society’. (Ed. TA Norton) pp. 87–102. (The British Phycolgical Society: Belfast)

Evans LV, Trewavas AJ (1991) Is algal development controlled by plant growth substances? Journal of Phycology 27, 322–326.
CrossRef |

Federl P , Prusinkiewicz P (2004) Solving differential equations in developmental models of multicellular structures expressed using L-systems. In ‘Proceedings of Computing Science. ICCS 2004’. (Eds M Bubak, G van Albada, P Sloot, J Dongarra) pp. 65–72. (Springer-Verlag: Berlin)

Garbary DJ , Corbit JD (1992) Lindenmayer-systems as models of red algal morphology and development. In ‘Progress in phycological research, vol. 8’. (Eds FE Round, DJ Chapman) pp. 143–177. (Elsevier Biomedical Press: New York)

Garcia-Bellido AC, Garcia-Bellido A (1998) Cell proliferation in the attainment of constant size and shapes: the Entelechia model. The International Journal of Developmental Biology 42, 353–362.
PubMed |


Hammel M, Prusinkiewicz P (1996) Visualization of developmental processes by extrusion in space time. Proceedings of Graphics Interface 96, 246–258.

Heinlein MF, Epel B (2004) Macromolecular transport and signaling through plasmodesmata. International Review of Cytology 235, 93–164.
CrossRef | PubMed |

Hoel DG, Mitchell TJ (1971) The simulation, fitting and testing of a stochastic cellular proliferation model. Biometrics 27, 191–199.
CrossRef | PubMed |

Holloway DM, Lantin M (2002) Maintaining apical dominance in the fern gametophyte. Annals of Botany 89, 409–417.
CrossRef | PubMed |

Honda H (1973) Pattern formation of the coenobial algae Pediastrum biwae Negoro. Journal of Theoretical Biology 42, 461–481.
CrossRef | PubMed |

Izaguirre JA, Chaturvedi R, Huang C, Cickovski T, Coffland J , et al. (2004) COMPUCELL, a multi-model framework for simulation of morphogenesis. Bioinformatics (Oxford, England) 20, 1129–1137.
CrossRef | PubMed |

Kawai H, Hanyuda T, Draisma SGA, Müller DG (2007) Molecular phylogeny of Discosporangium mesarthrocarpum (Phaeophyceae) with a reinstatement of the order Discosporangiales. Journal of Phycology 43, 186–194.
CrossRef |

Kirkpatrick S, Gelatt CD, Vecchi MP (1983) Optimization by simulated annealing. Science 220, 671–680.
CrossRef | PubMed |

Le Bail A, Billoud B, Maisonneuve C, Peters AF, Cock MJ, Charrier B (2008) Early developmental pattern of the brown alga Ectocarpus siliculosus (Ectocarpales, Phaeophyceae) sporophyte. Journal of Phycology in press ,

Lindenmayer A (1971) Developmental systems without cellular interactions, their languages and grammars. Journal of Theoretical Biology 30, 455–484.
CrossRef | PubMed |

Lindenmayer A (1975) Developmental algorithms for multicellular organisms: a survey of L-systems. Journal of Theoretical Biology 54, 3–22.
CrossRef | PubMed |

Lück J, Lück HB, L’Hardy-Halos MT, Lambert C (1999) Simulation of the thallus development of Antithamnion plumula (Ellis) LeJolis (Rhodophyceae, Ceramiales). Acta Biotheoretica 47, 329–351.
CrossRef |

Mariscal V, Herrero A, Flores E (2007) Continuous periplasm in a filamentous, heterocyst-forming cyanobacterium. Molecular Microbiology 65, 1139–1145.
CrossRef | PubMed |

Meeks JC, Elhai J (2002) Regulation of cellular differentiation in filamentous cyanobacteria in free-living and plant-associated symbiotic growth states. Microbiology and Molecular Biology Reviews 66, 94–121.
CrossRef | PubMed |

Metropolis N, Rosenbluth A, Rosenbluth M, Teller A, Teller E (1953) Equations of state calculations by fast computing machines. Journal of Chemical Physics 21, 1087–1091.
CrossRef |

Oliveira L, Bisalputra T (1973) Studies in the brown alga Ectocarpus in culture. Journal of Submicroscopic Cytology 5, 107–120.

Pedersén M (1973) Identification of a cytokinin, 6-(3 methyl-2-butenylamino)purine, in sea water and the effect of cytokinins on brown algae. Physiologia Plantarum 28, 101–105.
CrossRef |

Peters AF, Marie D, Scornet D, Kloareg B, Cock JM (2004) Proposal of Ectocarpus siliculosus (Ectocarpales, Phaeophyceae) as a model organism for brown algal genetics and genomics. Journal of Phycology 40, 1079–1088.
CrossRef |

Prusinkiewicz P , Lindenmayer A (1990) ‘The algorithmic beauty of plants.’ (Springer-Verlag: New York)

Prusinkiewicz P, Rolland-Lagan AG (2006) Modelling plant morphogenesis. Current Opinion in Plant Biology 9, 83–88.
CrossRef | PubMed |

R Development Core Team (2007) ‘R: a language and environment for statistical computing.’ (R Foundation for Statistical Computing: Vienna). Available at http://www.R-project.org [Verified 8 September 2008]

Remphrey WR, Neal BR, Steeves TA (1983) The morphology and growth of Arctostaphylos uva-ursi (bearberry), parts i and ii. Canadian Journal of Botany 61, 2430–2458.
CrossRef |

Richardson D (1973) Random growth in a tessellation. Proceedings of the Cambridge Philosophical Society 74, 563–573.

Rolland-Lagan AG, Coen E, Impey SJ, Bangham JA (2005) A computational method for inferring growth parameters and shape changes during development based on clonal analysis. Journal of Theoretical Biology 232, 157–177.
CrossRef | PubMed |

Silva HS, Martins ML (2003) A cellular automata model for cell differentiation. Physica A: Statistical Mechanics and Its Applications 322, 555–566.
CrossRef |

Stadler PF (1996) Landscapes and their correlation functions. Journal of Mathematical Chemistry 20, 1–45.
CrossRef |

Starr RC, Zeikus JA (1993) UTEX – the culture collection of algae at the University of Texas at Austin 1993 list of cultures. Journal of Phycology 29, 1–106.
CrossRef |

Stern CD (2006) Evolution of the mechanisms that establish the embryonic axes. Current Opinion in Genetics & Development 16, 413–418.
CrossRef | PubMed |

Stirk WA, Novàk O, Strnad M, van Staden J (2003) Cytokinins in macroalgae. Plant Growth Regulation 41, 13–24.
CrossRef |

Weinberger E (1990) Correlated and uncorrelated fitness landscapes and how to tell the difference. Biological Cybernetics 63, 325–336.
CrossRef |

Yoon HS, Golden JW (1998) Heterocyst pattern formation controlled by a diffusible peptide. Science 282, 935–938.
CrossRef | PubMed |








Rent Article (via Deepdyve) Export Citation Cited By (5)