Functional Plant Biology Functional Plant Biology Society
Plant function and evolutionary biology

Why is plant-growth response to elevated CO2 amplified when water is limiting, but reduced when nitrogen is limiting? A growth-optimisation hypothesis

Ross E. McMurtrie A G , Richard J. Norby B , Belinda E. Medlyn C , Roderick C. Dewar D , David A. Pepper A , Peter B. Reich E and Craig V. M. Barton F

A School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW 2052, Australia.

B Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6422, USA.

C School of Biological Sciences, Macquarie University, Sydney, NSW 2019, Australia.

D Laboratory of Functional Ecology and Environmental Physics (EPHYSE), INRA Centre de Bordeaux-Aquitaine, BP81, 33883 Villenave d’Ornon, France.

E Department of Forest Resources, University of Minnesota, St Paul, MN 55108, USA.

F Forest Resources Research, NSW Department of Primary Industry, PO Box 100, Beecroft, NSW 2119, Australia.

G Corresponding author. Email:

H This paper originates from a presentation at EcoFIZZ 2007, Richmond, New South Wales, Australia, September 2007.

Functional Plant Biology 35(6) 521-534
Submitted: 15 April 2008  Accepted: 4 June 2008   Published: 4 August 2008


Experimental evidence indicates that the stomatal conductance and nitrogen concentration ([N]) of foliage decline under CO2 enrichment, and that the percentage growth response to elevated CO2 is amplified under water limitation, but reduced under nitrogen limitation. We advance simple explanations for these responses based on an optimisation hypothesis applied to a simple model of the annual carbon–nitrogen–water economy of trees growing at a CO2-enrichment experiment at Oak Ridge, Tennessee, USA. The model is shown to have an optimum for leaf [N], stomatal conductance and leaf area index (LAI), where annual plant productivity is maximised. The optimisation is represented in terms of a trade-off between LAI and stomatal conductance, constrained by water supply, and between LAI and leaf [N], constrained by N supply. At elevated CO2 the optimum shifts to reduced stomatal conductance and leaf [N] and enhanced LAI. The model is applied to years with contrasting rainfall and N uptake. The predicted growth response to elevated CO2 is greatest in a dry, high-N year and is reduced in a wet, low-N year. The underlying physiological explanation for this contrast in the effects of water versus nitrogen limitation is that leaf photosynthesis is more sensitive to CO2 concentration ([CO2]) at lower stomatal conductance and is less sensitive to [CO2] at lower leaf [N].

Additional keywords: carbon–nitrogen–water economy, climate change, CO2 enrichment, forest model, leaf area index, stomatal conductance.


Ackerly DD 1999 Self-shading, carbon gain and leaf dynamics: a test of alternative optimality models. Oecologia 119 300 310 doi:10.1007/s004420050790

Ainsworth EA Long SP 2005 What have we learned from 15 years of free-air CO2 enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2. The New Phytologist 165 351 372 doi:10.1111/j.1469-8137.2004.01224.x

Ainsworth EA Rogers A 2007 The response of photosynthesis and stomatal conductance to rising [CO2], mechanisms and environmental interactions. Plant, Cell & Environment 30 258 270 doi:10.1111/j.1365-3040.2007.01641.x

Anten NPR 2002 Evolutionarily stable leaf area production in plant populations. Journal of Theoretical Biology 217 15 32 doi:10.1006/jtbi.2002.3022

Anten NPR 2005 Optimal photosynthetic characteristics of individual plants in vegetation stands and implications for species coexistence. Annals of Botany 95 495 506 doi:10.1093/aob/mci048

Anten NPR Schieving F Medina E Werger MJA Schuffelen P 1995 Optimal leaf area indices in C3 and C4 mono- and dicotyledonous species at low and high nitrogen availability. Physiologia Plantarum 95 541 550 doi:10.1111/j.1399-3054.1995.tb05520.x

Arp WJ van Mierlo JEM Berendse F Snijders W 1998 Interactions between elevated CO2 concentration, nitrogen and water: effects on growth and water use of six perennial species. Plant, Cell & Environment 21 1 11 doi:10.1046/j.1365-3040.1998.00257.x

Baker JT Allen LH Jr Boote KJ Pickering NB 1997 Rice responses to drought under carbon dioxide enrichment. Photosynthesis and evapotranspiration. Global Change Biology 3 129 138 doi:10.1046/j.1365-2486.1997.00061.x

Barnard R Barthes L Le Roux X Harmens H Raschi A Soussana J Winkler B Leadley PW 2004 Atmospheric CO2 elevation has little effect on nitrifying and denitrifying enzyme activity in four European grasslands. Global Change Biology 10 488 497 doi:10.1111/j.1529-8817.2003.00746.x

Byrne C Jones MB 2002 Effects of elevated CO2 and nitrogen fertiliser on biomass productivity, community structure and species diversity of a semi-natural grassland in Ireland. Biology and Environment Proceedings of the Royal Irish Academy. Section B: Biological, Geological, and Chemical Science 102B 141 150

Centritto M Lee HSJ Jarvis PG 1999 Interactive effects of elevated [CO2] and drought on cherry (Prunus avium) seedlings – I. Growth, whole-plant water use efficiency and water loss. The New Phytologist 141 129 140

Comins HN McMurtrie RE 1993 Long-term response of nutrient-limited forests to CO2-enrichment: equilibrium behavior of plant–soil models. Ecological Applications 3 666 681 doi:10.2307/1942099

Curtis PS Wang XZ 1998 A meta-analysis of elevated CO2 effects on woody plant mass, form, and physiology. Oecologia 113 299 313 doi:10.1007/s004420050381

de Graaff M-A van Groenigen K-J Six J Hungate B van Kessel C 2006 Interactions between plant growth and soil nutrient cycling under elevated CO2: a meta-analysis. Global Change Biology 12 2077 2091 doi:10.1111/j.1365-2486.2006.01240.x

DeLucia EH Moore DJ Norby RJ 2005 Contrasting responses of forest ecosystems to rising atmospheric CO2: implications for the global C cycle. Global Biogeochemical Cycles 19 GB3006 doi:10.1029/2004GB002346

DeLucia EH Drake JE Thomas RB Gonzalez-Meler M 2007 Forest carbon use efficiency: is respiration a constant fraction of gross primary production? Global Change Biology 13 1157 1167 doi:10.1111/j.1365-2486.2007.01365.x

Derner JD Johnson HB Kimball BA Pinter PJ Jr Polley HW et al 2003 Above- and below-ground responses of C3–C4 species mixtures to elevated CO2 and soil water availability. Global Change Biology 9 452 460 doi:10.1046/j.1365-2486.2003.00579.x

Dewar RC McMurtrie RE 1996 Sustainable stemwood yield in relation to the nitrogen balance of forest plantations: a model analysis. Tree Physiology 16 173 182

Dewar RC Medlyn BE McMurtrie RE 1998 A mechanistic analysis of light and carbon use efficiencies. Plant, Cell & Environment 21 573 588

Dewar RC Medlyn BE McMurtrie RE 1999 Acclimation of the respiration/photosynthesis ratio to temperature: insights from a model. Global Change Biology 5 615 622 doi:10.1046/j.1365-2486.1999.00253.x

Diaz S Grime J Harris J McPherson E 1993 Evidence of a feedback mechanism limiting plant response to elevated carbon dioxide. Nature 364 616 617 doi:10.1038/364616a0

Eamus D , Hatton T , Cook P , Colvin C (2006) ‘Ecohydrology: vegetation function, water and resource management.’ (CSIRO Publishing: Collingwood)

Ellsworth DS Reich PB Naumburg ES Koch GW Kubiske ME Smith SD 2004 Photosynthesis, carboxylation and leaf nitrogen responses of 16 species to elevated pCO2 across four free-air CO2 enrichment experiments in forest, grassland and desert. Global Change Biology 10 2121 2138 doi:10.1111/j.1365-2486.2004.00867.x

Farquhar GD , von Caemmerer S (1982) Modelling of photosynthetic response to environmental conditions. In ‘Physiological plant ecology II: water relations and carbon assimilation. Encyclopaedia of plant physiology. Vol. 12B’. (Eds O Lange, P Nobel, CB Osmond, H Zieger) pp. 549–587. (Springer-Verlag: Berlin)

Farquhar GD Buckley TN Miller JM 2002 Optimal stomatal control in relation to leaf area and nitrogen content. Silva Fennica 36 625 637

Field CB Jackson RB Mooney HA 1995 Stomatal responses to CO2: implications from the plant to the global scale. Plant, Cell & Environment 18 1214 1225

Field CB , Chapin FS III , Chiariello NR , Holland EA , Mooney HA (1996) The Jasper Ridge CO2 experiment: design and motivation. In ‘Carbon dioxide and terrestrial ecosystems’. (Eds GW Koch, HA Mooney) pp. 112–145. (Academic Press: San Diego)

Field CB Lund CP Chiariello NR Mortimer BE 1997 CO2 effects on the water budget of grassland microcosm communities. Global Change Biology 3 197 206 doi:10.1046/j.1365-2486.1997.t01-1-00096.x

Franklin O 2007 Optimal nitrogen allocation controls tree responses to elevated CO2. The New Phytologist 174 811 822 doi:10.1111/j.1469-8137.2007.02063.x

Franklin O Ågren GI 2002 Leaf senescence and resorption as mechanisms of maximizing photosynthetic production during canopy development at N limitation. Functional Ecology 16 727 733 doi:10.1046/j.1365-2435.2002.00674.x

Gill RA Polley HW Johnson HB Anderson LJ Maherali H Jackson RB 2002 Nonlinear grassland responses to past and future atmospheric CO2. Nature 417 279 282 doi:10.1038/417279a

Guehl JM Picon C Aussenac G Gross P 1994 Interactive effects of elevated CO2 and soil drought on growth and transpiration efficiency and its determinants in two European forest tree species. Tree Physiology 14 707 724

Gunderson CA Sholtis JD Wullschleger SD Tissue DT Hanson PJ Norby RJ 2002 Environmental and stomatal control of photosynthetic enhancement in the canopy of a sweetgum (Liquidambar styraciflua L.) plantation during three years of CO2 enrichment. Plant, Cell & Environment 25 379 393

Hikosaka K 2005 Leaf canopy as a dynamic system: ecophysiology and optimality in leaf turnover. Annals of Botany 95 521 533 doi:10.1093/aob/mci050

Jarvis PG McNaughton SJ 1986 Stomatal control of transpiration: scaling up from leaf to region. Advances in Ecological Research 15 1 49

Kimball BA Mauney JR 1993 Response of cotton to varying CO2, irrigation, and nitrogen – yield and growth. Agronomy Journal 85 706 712

King DA 1993 A model analysis of the influence of root and foliage allocation on forest production and competition between trees. Tree Physiology 12 119 135

Lee TD Tjoelker MG Ellsworth DS Reich PB 2001 Leaf gas exchange responses of 13 prairie grassland species to elevated CO2 and increased nitrogen supply. The New Phytologist 150 405 418

Leuning R Cleugh HA Zegelin SJ Hughes D 2005 Carbon and water fluxes over a temperate Eucalyptus forest and a tropical wet/dry savanna in Australia: measurements and comparison with MODIS remote sensing estimates. Agricultural and Forest Meteorology 129 151 173 doi:10.1016/j.agrformet.2004.12.004

Luo Y Su B Currie WS Dukes JS Finzi A et al 2004 Progressive nitrogen limitation of ecosystem responses to rising atmospheric CO2. Bioscience 54 731 739 doi:10.1641/0006-3568(2004)054[0731:PNLOER]2.0.CO;2

Luo Y Hui D Zhang D 2006 Elevated CO2 stimulates net accumulations of carbon and nitrogen in land ecosystems: a meta-analysis. Ecology 87 53 63 doi:10.1890/04-1724

Mäkelä A Valentine HT 2001 The ratio of NPP to GPP: evidence of change over the course of stand development. Tree Physiology 21 1015 1030

McCarthy HR Oren R Finzi AC Johnsen KH 2006 Canopy leaf area constrains [CO2]-induced enhancement of productivity and partitioning among aboveground carbon pools Proceedings of the National Academy of Sciences of the United States of America 103 19356 19361

McMurtrie RE 1991 Relationship of forest productivity to nutrient and carbon supply – a modelling analysis. Tree Physiology 9 87 99

McMurtrie RE Comins HN 1996 The temporal response of forest ecosystems to doubled atmospheric CO2 concentration. Global Change Biology 2 49 57

McMurtrie RE Wang Y-P 1993 Mathematical models of the photosynthetic response of tree stands to rising CO2 concentrations and temperatures. Plant, Cell & Environment 16 1 13 doi:10.1111/j.1365-3040.1993.tb00839.x

McMurtrie RE Benson ML Linder S Running SW Talsma T Crane WJB Myers BJ 1990 Water/nutrient interactions affecting the productivity of stands of Pinus radiata. Forest Ecology and Management 30 415 423 doi:10.1016/0378-1127(90)90151-Z

Medhurst J Parsby J Linder S Wallin G Ceschia E Slaney M 2006 A whole-tree chamber system for examining tree-level physiological responses of field-grown trees to environmental variation and climate change. Plant, Cell & Environment 29 1853 1869 doi:10.1111/j.1365-3040.2006.01553.x

Medlyn BE Badeck FW De Pury DGG Barton CVM Broadmeadow M et al 1999 Effects of elevated [CO2] on photosynthesis in European forest species: a meta-analysis of model parameters. Plant, Cell & Environment 22 1475 1495 doi:10.1046/j.1365-3040.1999.00523.x

Medlyn BE McMurtrie RE Dewar RC Jeffreys MP 2000 Soil processes dominate the long-term response of forest net primary productivity to increased temperature and atmospheric CO2 concentration. Canadian Journal of Forest Research 30 873 888 doi:10.1139/cjfr-30-6-873

Medlyn BE Barton CVM Broadmeadow MSJ Ceulemans R De Angelis P et al 2001 Stomatal conductance of forest species after long-term exposure to elevated CO2 concentration: a synthesis. The New Phytologist 149 247 264 doi:10.1046/j.1469-8137.2001.00028.x

Medlyn BE Barrett D Landsberg J Sands P Clement R 2003 Conversion of canopy intercepted radiation to photosynthate: review of modelling approaches for regional scales. Functional Plant Biology 30 153 169 doi:10.1071/FP02088

Moore DJP Aref S Ho RM Pippen JS Hamilton JG De Lucia EH 2006 Annual basal area increment and growth duration of Pinus taeda in response to eight years of free-air carbon dioxide enrichment. Global Change Biology 12 1367 1377 doi:10.1111/j.1365-2486.2006.01189.x

Morgan JA Pataki DE Körner C Clark H Del Grosso SJ et al 2004 Water relations in grassland and desert ecosystems exposed to elevated atmospheric CO2. Oecologia 140 11 25 doi:10.1007/s00442-004-1550-2

Myneni RB Hoffman S Knyazikhin Y Privette JL Glassy J et al 2002 Global products of vegetation leaf area and fraction absorbed PAR from year one of MODIS data. Remote Sensing of Environment 83 214 231 doi:10.1016/S0034-4257(02)00074-3

Norby RJ Iversen CM 2006 Nitrogen uptake, distribution, turnover, and efficiency of use in a CO2-enriched sweetgum forest. Ecology 87 5 14 doi:10.1890/04-1950

Norby RJ Hanson PJ O’Neill EG Tschaplinski TJ Weltzin JF et al 2002 Net primary productivity of a CO2-enriched deciduous forest and the implications for carbon storage. Ecological Applications 12 1261 1266

Norby RJ Sholtis JD Gunderson CA Jawdy SS 2003 Leaf dynamics of a deciduous forest canopy: no response to elevated CO2. Oecologia 136 574 584

Norby RJ Ledford J Reilly CD Miller NE O’Neill EG 2004 Fine-root production dominates response of a deciduous forest to atmospheric CO2 enrichment. Proceedings of the National Academy of Sciences of the United States of America 101 9689 9693 doi:10.1073/pnas.0403491101

Norby RJ DeLucia EH Gielen B Calfapietra C Giardina CP et al 2005 Forest response to elevated CO2 is conserved across a broad range of productivity. Proceedings of the National Academy of Sciences of the United States of America 102 18052 18056 doi:10.1073/pnas.0509478102

Norby RJ , Wullschleger SD , Hanson PJ , Gunderson CA , Tschaplinski TJ , Jastrow JD (2006) CO2 enrichment of a deciduous forest: the Oak Ridge FACE experiment. In ‘Managed ecosystems and CO2: case studies, processes and perspectives’. (Eds J Nösberger, SP Long, RJ Norby, M Stitt, GR Hendrey, H Blum) Ecological Studies Vol. 187. pp. 231–251. (Springer-Verlag, Berlin, Heidelberg)

Nowak RS Ellsworth DS Smith SD 2004 Functional responses of plants to elevated atmospheric CO2 – do photosynthetic and productivity data from FACE experiments support early predictions? The New Phytologist 162 253 280 doi:10.1111/j.1469-8137.2004.01033.x

Oren R Ellsworth DS Johnson KH Phillips N Ewers BE et al 2001 Soil fertility limits carbon sequestration by a forest ecosystem in a CO2-enriched atmosphere. Nature 411 469 472 doi:10.1038/35078064

Pepper DA Del Grosso SJ McMurtrie RE Parton WJ 2005 Simulated carbon sink response of shortgrass steppe, tallgrass prairie and forest ecosystems to rising [CO2], temperature and nitrogen input. Global Biogeochemical Cycles 19 GB1004 doi:10.1029/2004GB002226

Pepper DA Eliasson PE McMurtrie RE Corbeels M Ågren GI Strömgren M Linder S 2007 Simulated mechanisms of soil N feedback on the forest CO2 response. Global Change Biology 13 1265 1281 doi:10.1111/j.1365-2486.2007.01342.x

Potter CS Randerson JT Field CB Matson PA Vitousek PM Mooney HA Klooster SA 1993 Terrestrial ecosystem production: a process model based on global satellite and surface data. Global Biogeochemical Cycles 7 811 841 doi:10.1029/93GB02725

Reich PB Ellsworth DS Walters MB Vose JM Gresham C Volin JC Bowman WD 1999 Generality of leaf trait relationships: a test across six biomes. Ecology 80 1955 1969

Reich PB Hobbie SE Lee T Ellsworth DS West JB Tilman D Knops JMH Naeem S Trost J 2006 a Nitrogen limitation constrains sustainability of ecosystem response to CO2. Nature 440 922 925

Reich PB Hungate BA Luo Y 2006 b Carbon–nitrogen interactions in terrestrial ecosystems in response to rising atmospheric carbon dioxide. Annual Review of Ecology Evolution and Systematics 37 611 636 doi:10.1146/annurev.ecolsys.37.091305.110039

Reich PB Tjoelker J-L Machado J-L Oleksyn J 2006 c Universal scaling of respiratory metabolism, size and nitrogen in plants. Nature 439 457 461 doi:10.1038/nature04282

Ruimy A Saugier B Dedieu G 1994 Methodology for the estimation of terrestrial net primary production from remotely sensed data. Journal of Geophysical Research 99 5263 5283 doi:10.1029/93JD03221 D3

Ryan MG 1991 Effect of climate change on plant respiration. Ecological Applications 1 157 167 doi:10.2307/1941808

Sands PJ 1995 Modelling canopy production. II. From single-leaf photosynthetic parameters to daily canopy photosynthesis. Australian Journal of Plant Physiology 22 603 614

Sands PJ 1996 Modelling canopy production. III. Canopy light-utilisation efficiency and its sensitivity to physiological environmental variables. Australian Journal of Plant Physiology 23 103 114

Schieving F Poorter H 1999 Carbon gain in a multispecies canopy: the role of specific leaf area and photosynthetic nitrogen-use efficiency in the tragedy of the commons. The New Phytologist 143 201 211

Schneider MK Lüscher A Richter M Aeschlimann U Hartwig UA Blum H Frossard E Nösberger J 2004 Ten years of free-air CO2 enrichment altered the mobilization of N from soil in Lolium perenne L. swards. Global Change Biology 10 1377 1388 doi:10.1111/j.1365-2486.2004.00803.x

Shaw MR , Huxman TE , Lund CP (2005) Modern and future semi-arid and arid ecosystems. In ‘History of atmospheric CO2 and its effects on plants, animals, and ecosystems’. (Eds JR Ehleringer, TE Cerling, MD Dearing) Ecological Studies Vol. 177. pp. 415–440. (Springer-Verlag: New York)

Sholtis DJ Gunderson CA Norby RJ Tissue DT 2004 Persistent stimulation of photosynthesis by elevated CO2 in a sweetgum (Liquidambar styraciflua) forest stand. The New Phytologist 162 343 354 doi:10.1111/j.1469-8137.2004.01028.x

Tissue DT Lewis JD Wullschleger SD Amthor JS Griffin KL Anderson OR 2002 Leaf respiration at different canopy positions in sweetgum (Liquidambar styraciflua) grown in ambient and elevated concentrations of carbon dioxide in the field. Tree Physiology 22 1157 1166

Wand S Midgeley G Jones M Curtis PS 1999 Responses of wild C4 and C3 grass (Poaceae) species to elevated atmospheric CO2 concentration: a meta-analytic test of current theories and perceptions. Global Change Biology 5 723 741

Wright IJ Reich PB Westoby M 2003 Least-cost input mixtures of water and nitrogen for photosynthesis. American Naturalist 161 98 111 doi:10.1086/344920

Wullschleger SD Norby RJ 2001 Sap velocity and canopy transpiration in a sweetgum stand exposed to free-air CO2 enrichment (FACE). The New Phytologist 150 489 498 doi:10.1046/j.1469-8137.2001.00094.x

Wullschleger SD Tschaplinski TJ Norby RJ 2002 Plant water relations at elevated CO2 – implications for water-limited environments. Plant, Cell & Environment 25 319 331 doi:10.1046/j.1365-3040.2002.00796.x

Zak D Pregitzer K King J Holmes W 2000 Elevated atmospheric CO2, fine roots and the response of soil microorganisms: a review and hypothesis. The New Phytologist 147 201 222 doi:10.1046/j.1469-8137.2000.00687.x

Zak DR Holmes WE Finzi AC Norby RJ Schlesinger WH 2003 Soil nitrogen cycling under elevated CO2: a synthesis of forest FACE experiments. Ecological Applications 13 1508 1514 doi:10.1890/03-5055

Export Citation