Functional Plant Biology Functional Plant Biology Society
Plant function and evolutionary biology

The superhydrophilic and superoleophilic leaf surface of Ruellia devosiana (Acanthaceae): a biological model for spreading of water and oil on surfaces

Kerstin Koch A C , Inga Christina Blecher A , Gabriele König B , Stefan Kehraus B and Wilhelm Barthlott A

A Nees Institut für Biodiversität der Pflanzen, Meckenheimer Allee 170, 53115 Bonn, Germany.

B Institut für Pharmazeutische Biologie, Nußallee 6, 53115 Bonn, Germany.

C Corresponding author. Email:

Functional Plant Biology 36(4) 339-350
Submitted: 18 November 2008  Accepted: 11 February 2009   Published: 1 April 2009


Most leaves of plants are hydrophobic or even superhydrophobic. Surprisingly the leaves of the tropical herb of Ruellia devosiana Makoy ex E. Morr. Hort. (Acanthaceae) are superamphiphilic. Water droplets (10 µL) spread to a film with a contact angle of zero degree within less than 0.3 s. Such surfaces with a high affinity to water are termed superhydrophilic. Droplets of oil applied on R. devosiana leaves and replicas showed a similar spreading behaviour as water. These surfaces are superoleophilic, and in combination with their superhydrophilicity they are called superamphiphilic. Independent of the growing conditions, a reversibility of the superhydrophilicity in R. devosiana leaves was found. Additionally, on 90° tilted leaves a pressure free capillary transport of water occurs against the force of gravity. By using a low pressure environmental scanning electron microscope (ESEM), the water condensation and evaporation process on the leaves has been observed. The leaf surfaces are composed of five different cell types: conical cells, glands, multicellular hairs, hair-papilla cells and longitudinal expanded, flat epidermis cells, which, in combination with the surrounding papilla cells, form channel like structures. Replication of the leaf surface structure and coating of the replicas with hydrophilic Tween 20 and a water soluble extract gained from the leaf surfaces resulted in artificial surfaces with the same fast water spreading properties as described for the leaves.

Additional keywords: biomimetic, plant surfaces, superamphiphilic, superhydrophilic, superoleophilic, water spreading, wettability.


Aurich O Osske G Pufahl K Romeike A Rönsch H Schreiber K Sembdner G 1965 Phytochemische Untersuchungen an Pflanzen der einheimischen Flora und des Gaterslebener Sortiments I. Mitteilung. Genetic Resources and Crop Evolution 13 621 714

Barthlott W , Ehler N (1977) ‘Rasterelektronenmikroskopie der Epidermis-Oberflächen von Spermatophyten, Tropische und subtropische Pflanzenwelt, Akademie der Wissenschaften und Literatur Mainz.’ (Franz Steiner Verlag: GmbH Wiesbaden, Germany).

Barthlott W Neinhuis C 1997 The purity of sacred lotus or escape from contamination in biological surfaces. Planta 202 1 8

Bauer U Bohn HF Federle W 2008 Harmless nectar source or deadly trap: Nepenthes pitchers are activated by rain, condensation and nectar. Proceedings of the Royal Society of London. Series B. Biological Sciences 275 259 265 doi:10.1098/rspb.2007.1402

Bico J Tordeux C Quere D 2001 Rough wetting. Europhysics Letters 55 214 220 doi:10.1209/epl/i2001-00402-x

Bilitewski U Genrich M Kadow S Mersak G 2003 Biochemical analysis with microfluidic systems. Analytical and Bioanalytical Chemistry 377 556 569 doi:10.1007/s00216-003-2179-4

Bohn HF Federle W 2004 Insect aquaplaning: Nepenthes pitcher plants capture prey with the peristome, a fully wettable water-lubricated anisotropic surface. Proceedings of the National Academy of Sciences of the United States of America 101 14138 14143 doi:10.1073/pnas.0405885101

Bonn D , Eggers J , Indekeu J , Meunier J , Rolley E (2008) Wetting and spreading. Reviews of Modern Physics, in press.

Cassie ABD Baxter S 1944 Wettability of porous surfaces. Transactions of the Faraday Society 40 546 551 doi:10.1039/tf9444000546

Extrand CW 2002 Model for contact angle and hysteresis on rough and ultraphobic surfaces. Langmuir 18 7991 7999 doi:10.1021/la025769z

Feng XJ Jiang L 2006 Design and creation of superwetting/antiweting surfaces. Advanced Materials 18 3063 3078 doi:10.1002/adma.200501961

Fujishima A , Hashimoto K , Watanabe T (1999) ‘TiO2 photocatalysis: fundamentals and applications.’ (BKC: Tokyo)

de Gennes PG 1985 Wetting: statics and dynamics. Reviews of Modern Physics 57 827 863 doi:10.1103/RevModPhys.57.827

Gould P 2003 Smart, clean surfaces. Materials Today 6 44 48

Hungund B Pathak C 1971 A survey of plants in Gujarat, India, for alkaloids, saponins and tannins. U.S.D.A. Forest Service Research Paper 201 1 11

Hunsche M Damerow L Schmitz-Eiberger M Noga G 2007 Mancozeb wash-off from apple seedlings by simulated rainfall as affected by drying time of fungicide deposit and rain characteristics. Crop Protection 26 768 774

Jung YC Bhushan B 2006 Contact angle, adhesion, and friction properties of micro- and nanopatterned polymers for superhydrophobicity. Nanotechnology 17 4970 4980 doi:10.1088/0957-4484/17/19/033

Koch K Bhushan B Barthlott W 2008 a Diversity of structure, morphology and wetting of plant surfaces. Soft Matter 4 1943 1963 doi:10.1039/b804854a

Koch K Schulte AJ Fischer A Gorb S Barthlott W 2008 b A fast, precise and low cost replication technique for nano- and high aspect ratio structures of biological and artifical surfaces. Bioinspiration and Biomimetics 3 046002 doi:10.1088/1748-3182/3/4/046002

Koch K Bhushan B Barthlott W 2009 a Multifunctional surface structures of plants: an inspiration for biomimetics. Invited review. Progress in Materials Science 54 137 178 doi:10.1016/j.pmatsci.2008.07.003

Koch K Bhushan B Jung YC Barthlott W 2009 b Fabrication of artificial lotus leaves and significance of hierarchical structure for superhydrophobicity and low adhesion. Soft Matter doi:10.1039/b818940d

Lindow SE Brandl MT 2003 Microbiology of the phyllosphere. Applied and Environmental Microbiology 6 875 883

Maillard M Wolfender J-L Hostettmann K 1993 Use of liquid chromatography-thermospray mass spectrometry in phytochemical analysis of crude plant extracts. Journal of Chromatography. A 647 147 154

Neinhuis C Barthlott W 1997 Characterization and distribution of water-repellent, self-cleaning plant surfaces. Annals of Botany 79 667 677 doi:10.1006/anbo.1997.0400

Nosonovsky M , Bhushan B (2008) ‘Multiscale dissipative mechanisms and hierarchical surfaces: friction, superhydrophobicity and biomimetics.’ (Springer-Verlag: Heidelberg)

Osbourn A 1996 Saponins and plant defence – a soap story. Trends in Plant Science 1 4 9 doi:10.1016/S1360-1385(96)80016-1

Parkin IP Palgrave RG 2005 Self-cleaning coatings. Journal of Materials Chemistry 15 1689 1695 doi:10.1039/b412803f

Quéré D 2008 Wetting and roughness. Annual Review of Materials Research 38 71 99 doi:10.1146/annurev.matsci.38.060407.132434

Rioboo R Marengo M Tropea C 2002 Time evolution of liquid drop impact onto solid, dry surfaces. Experiments in Fluids 33 112 124

Roisman IV Rioboo R Tropea C 2002 Normal impact of a liquid drop on a dry surface: model for spreading and receding. Proceedings of the Royal Society of London. Series A 458 1411 1430

Spurr AR 1969 A low-viscosity epoxy resin embedding medium for electron microscopy. Journal of Ultrastructure Research 26 31 43 doi:10.1016/S0022-5320(69)90033-1

Tanner LH 1979 The spreading of silicone oil drops on horizontal surfaces. Journal of Physics. D, Applied Physics 12 1473 1484 doi:10.1088/0022-3727/12/9/009

Wenzel RN 1936 Resistance of solid surfaces to wetting by water. Industrial & Engineering Chemistry 28 988 994 doi:10.1021/ie50320a024

Zhang M Ferrari M 1997 Reduction of albumin adsorption onto silicon surfaces by Tween 20. Inc. Biotechnology and Bioengineering 56 618 625 doi:10.1002/(SICI)1097-0290(19971220)56:6<618::AID-BIT4>3.0.CO;2-Q

Zhang X Shi F Niu J Jiang Y Wang Z 2008 Superhydrophobic surfaces: from structural control to functional application. Journal of Materials Chemistry 18 621 633 doi:10.1039/b711226b

Zimmermann J Rabe M Artus GRJ Seeger S 2008 Patterned superfunctional surfaces based on a silicone nanofilament coating. Soft Matter 4 450 452 doi:10.1039/b717734h

Export Citation