Functional Plant Biology Functional Plant Biology Society
Plant function and evolutionary biology

Ionic relations and osmotic adjustment in durum and bread wheat under saline conditions

Tracey Ann Cuin A , Yu Tian B , Stewart A. Betts A C , Rémi Chalmandrier A D and Sergey Shabala A E

A School of Agricultural Science, University of Tasmania, Private Bag 54, Hobart, Tas. 7001, Australia.

B Institute of Grassland Science, Department of Life Science, Northeast Normal University, ChangChun City, Jilin Province 130024, P.R. China.

C Present address: Department of Agriculture, Fisheries and Forestry, 18 Marcus Clarke Street, Canberra City, ACT 2601, Australia.

D Present address: Institut Polytechnique, LaSalle Beauvais, BP 30313, 60026 Beauvais, France.

E Corresponding author. Email:

Functional Plant Biology 36(12) 1110-1119
Submitted: 4 March 2009  Accepted: 10 September 2009   Published: 3 December 2009


Wheat breeding for salinity tolerance has traditionally focussed on Na+ exclusion from the shoot, but its association with salinity tolerance remains tenuous. Accordingly, the physiological significance of shoot Na+ exclusion and maintenance of an optimal K+ : Na+ ratio was re-evaluated by studying NaCl-induced responses in 50 genotypes of bread wheat (Triticum aestivum L.) and durum wheat (Triticum turgidum L. ssp. durum) treated with 150 mM NaCl. Overall, Na+ exclusion from the shoot correlated with salinity tolerance in both species and this exclusion was more efficient in bread compared with durum wheat. Interestingly, shoot sap K+ increased significantly in nearly all durum and bread wheat genotypes. Conversely, the total shoot K+ content declined. We argue that this increase in shoot sap K+ is needed to provide efficient osmotic adjustment under saline conditions. Durum wheat was able to completely adjust shoot sap osmolality using K+, Na+ and Cl; it had intrinsically higher levels of these solutes. In bread wheat, organic osmolytes must contribute ~13% of the total shoot osmolality. In contrast to barley (Hordeum vulgare L.), NaCl-induced K+ efflux from seedling roots did not predict salinity tolerance in wheat, implying that shoot, not root K+ retention is important in this species.

Additional keywords: salinity tolerance, screening, shoot sap ion content, Triticum aestivum, Triticum turgidum ssp. durum.


Ashraf M O’Leary JW 1996 Responses of some newly developed salt-tolerant genotypes of spring wheat to salt stress. 1. Yield components and ion distribution. Journal of Agronomy and Crop Science 176 91 101 doi:10.1111/j.1439-037X.1996.tb00451.x

Chen Z Newman I Zhou M Mendham N Zhang G Shabala S 2005 Screening plants for salt tolerance by measuring K+ flux: a case study for barley. Plant, Cell & Environment 28 1230 1246 doi:10.1111/j.1365-3040.2005.01364.x

Chen ZH Pottosin II Cuin TA Fuglsang AT Tester M et al 2007 a Root plasma membrane transporters controlling K+/Na+ homeostasis in salt-stressed barley. Plant Physiology 145 1714 1725 doi:10.1104/pp.107.110262

Chen ZH Zhou MX Newman IA Mendham NJ Zhang GP Shabala S 2007 b Potassium and sodium relations in salinised barley tissues as a basis of differential salt tolerance. Functional Plant Biology 34 150 162 doi:10.1071/FP06237

Chen ZG Shabala S Mendham N Newman I Zhang GP Zhou MX 2008 Combining ability of salinity tolerance on the basis of NaCl-induced K+ flux from roots of barley. Crop Science 48 1382 1388 doi:10.2135/cropsci2007.10.0557

Colmer TD Munns R Flowers TJ 2005 Improving salt tolerance of wheat and barley: future prospects. Australian Journal of Experimental Agriculture 45 1425 1443 doi:10.1071/EA04162

Colmer TD Flowers TJ Munns R 2006 Use of wild relatives to improve salt tolerance in wheat. Journal of Experimental Botany 57 1059 1078 doi:10.1093/jxb/erj124

Cuin TA Shabala S 2005 Exogenously supplied compatible solutes rapidly ameliorate NaCl-induced potassium efflux from barley roots. Plant & Cell Physiology 46 1924 1933 doi:10.1093/pcp/pci205

Cuin TA Shabala S 2007 Amino acids regulate salinity-induced potassium efflux in barley root epidermis. Planta 225 753 761 doi:10.1007/s00425-006-0386-x

Cuin TA Betts SA Chalmandrier R Shabala S 2008 A root’s ability to retain K+ correlates with salt tolerance in wheat. Journal of Experimental Botany 59 2697 2706 doi:10.1093/jxb/ern128

Dvořak J Noaman MM Goyal S Gorham J 1994 Enhancement of the salt tolerance of Triticum turgidum L. by the Kna1 locus transferred from the Triticum aestivum L. chromosome 4D by homoeologous recombination. Theoretical and Applied Genetics 87 872 877 doi:10.1007/BF00221141

El-Hendawy SE Hu YC Yakout GM Awad AM Hafiz SE Schmidhalter U 2005 Evaluating salt tolerance of wheat genotypes using multiple parameters. European Journal of Agronomy 22 243 253 doi:10.1016/j.eja.2004.03.002

Flowers TJ 2004 Improving crop salt tolerance. Journal of Experimental Botany 55 307 319 doi:10.1093/jxb/erh003

Flowers TJ Hajibagheri MA 2001 Salinity tolerance in Hordeum vulgare: ion concentrations in root cells of cultivars differing in salt tolerance. Plant and Soil 231 1 9 doi:10.1023/A:1010372213938

Francois LE Maas EV Donovan TJ Youngs VL 1986 Effect of salinity on grain-yield and quality, vegetative growth, and germination of semidwarf and durum-wheat. Agronomy Journal 78 1053 1058

Fricke W Leigh RA Tomos AD 1996 The intercellular distribution of vacuolar solutes in the epidermis and mesophyll of barley leaves changes in response to NaCl. Journal of Experimental Botany 47 1413 1426

Genc Y McDonald GK Tester M 2007 Reassessment of tissue Na+ concentration as a criterion for salinity tolerance in bread wheat. Plant, Cell & Environment 30 1486 1498 doi:10.1111/j.1365-3040.2007.01726.x

Gorham J Hardy C Wyn Jones RG Joppa LR Law CN 1987 Chromosomal location of a K/Na discrimination character in the D-genome of wheat. Theoretical and Applied Genetics 74 584 588 doi:10.1007/BF00288856

Gorham J Wyn Jones RG Bristol A 1990 Partial characterization of the trait for enhanced K+–Na+ discrimination in the D-genome of wheat. Planta 180 590 597 doi:10.1007/BF02411458

Gorham J Bridges J Dubcovsky J Dvořák J Hollington PA Luo MC Khan JA 1997 Genetic analysis and physiology of a trait for enhanced K+/Na+ discrimination in wheat. New Phytologist 137 109 116 doi:10.1046/j.1469-8137.1997.00825.x

Greenway H Munns R 1980 Mechanisms of salt tolerance in non-halophytes. Annual Review of Plant Physiology and Plant Molecular Biology 31 149 190

Hu Y Schmidhalter U 1997 Interactive effects of salinity and macronutrient level on wheat. II. Composition. Journal of Plant Nutrition 20 1169 1182

Hunt J 1982 Dilute hydrochloric acid extraction of plant material for routine cation analysis. Communications in Soil Science and Plant Analysis 13 49 55 doi:10.1080/00103628209367243

James RA Munns R von Caemmerer S Trejo C Miller C Condon T 2006 Photosynthetic capacity is related to the cellular and subcellular partitioning of Na+, K+, and Cl in salt-affected barley and durum wheat. Plant, Cell & Environment 29 2185 2197 doi:10.1111/j.1365-3040.2006.01592.x

Maas EV Grieve CM 1990 Spike and leaf development in salt-stressed wheat. Crop Science 30 1309 1313

Maathuis FJM Amtmann A 1999 K+ nutrition and Na+ toxicity: the basis of cellular K+/Na+ ratios. Annals of Botany 84 123 133

Møller IS Tester M 2007 Salinity tolerance of Arabidopsis: a good model for cereals? Trends in Plant Science 12 534 540 doi:10.1016/j.tplants.2007.09.009

Munns R 2005 Genes and salt tolerance: bringing them together. New Phytologist 167 645 663 doi:10.1111/j.1469-8137.2005.01487.x

Munns R James RA 2003 Screening methods for salinity tolerance: a case study with tetraploid wheat. Plant and Soil 253 201 218 doi:10.1023/A:1024553303144

Munns R Rawson HM 1999 Effect of salinity on salt accumulation and reproductive development in the apical meristem of wheat and barley. Australian Journal of Plant Physiology 26 459 464 doi:10.1071/PP99049

Munns R Tester M 2008 Mechanisms of salinity tolerance. Annual Review of Plant Biology 59 651 681 doi:10.1146/annurev.arplant.59.032607.092911

Munns R James RA Läuchli A 2006 Approaches to increasing the salt tolerance of wheat and other cereals. Journal of Experimental Botany 57 1025 1043 doi:10.1093/jxb/erj100

Newman IA 2001 Ion transport in roots: measurement of fluxes using ion-selective microelectrodes to characterize transporter function. Plant, Cell & Environment 24 1 14 doi:10.1046/j.1365-3040.2001.00661.x

Palmgren MG 2001 Plant plasma membrane H+-ATPases: powerhouses for nutrient uptake. Annual Review of Plant Physiology and Plant Molecular Biology 52 817 845 doi:10.1146/annurev.arplant.52.1.817

Poustini K Siosemardeh A 2004 Ion distribution in wheat cultivars in response to salinity stress. Field Crops Research 85 125 133 doi:10.1016/S0378-4290(03)00157-6

Rashid A Qureshi RH Hollington PA Wyn Jones RG 1999 Comparative responses of wheat (Triticum aestivum L.) cultivars to salinity at the seedling stage. Journal Agronomy & Crop Science 182 199 208 doi:10.1046/j.1439-037x.1999.00295.x

Raven JA 1985 Regulation of pH and generation of osmolarity in vascular plants – a cost–benefit analysis in relation to efficiency of use of energy, nitrogen and water. New Phytologist 101 25 77 doi:10.1111/j.1469-8137.1985.tb02816.x

Rawson HM Richards RA Munns R 1988 An examination of selection criteria for salt tolerance in wheat, barley and Triticale genotypes. Australian Journal of Agricultural Research 39 759 772 doi:10.1071/AR9880759

Ruan YF El-Hendawy SE Hu YC Schmidhalter U 2007 Differential effect of moderate salinity on growth and ion contents in the mainstem and subtillers of two wheat genotypes. Soil Science and Plant Nutrition 53 782 791 doi:10.1111/j.1747-0765.2007.00203.x

Schachtman DP Munns R 1992 Sodium accumulation in leaves of Triticum species that differ in salt tolerance. Australian Journal of Plant Physiology 19 331 340 doi:10.1071/PP9920331

Serrano R Rodriguez-Navarro A 2001 Ion homeostasis during salt stress in plants. Current Opinion in Cell Biology 13 399 404 doi:10.1016/S0955-0674(00)00227-1

Shabala S 2000 Ionic and osmotic components of salt stress specifically modulate net ion fluxes from bean leaf mesophyll. Plant, Cell & Environment 23 825 837 doi:10.1046/j.1365-3040.2000.00606.x

Shabala S Cuin TA 2008 Potassium transport and plant salt tolerance. Physiologia Plantarum 133 651 669 doi:10.1111/j.1399-3054.2007.01008.x

Shabala S Shabala L Van Volkenburgh E 2003 Effect of calcium on root development and root ion fluxes in salinised barley seedlings. Functional Plant Biology 30 507 514 doi:10.1071/FP03016

Shabala S Demidchik V Shabala L Cuin TA Smith SJ Miller AJ Davies JM Newman IA 2006 Extracellular Ca2+ ameliorates NaCl-induced K+ loss from Arabidopsis root and leaf cells by controlling plasma membrane K+-permeable channels. Plant Physiology 141 1653 1665 doi:10.1104/pp.106.082388

Skoog DA , West DM , Holler FJ , Crouch SR (2000) ‘Analytical chemistry: an introduction.’ 7th edn. (Saunders College Publishing: Philadelphia)

Smethurst CF Rix K Garnett T Auricht G Bayart A Lane P Wilson SJ Shabala S 2008 Multiple traits associated with salt tolerance in lucerne: revealing the underlying cellular mechanisms. Functional Plant Biology 35 640 650 doi:10.1071/FP08030

US Department of Agriculture (2003) ‘Annual world production summary – grains.’ Available at!ut/p/_s.7_0_A/7_0_1OB?parentnav=AGRICULTURE&navid=CROP_PRODUCTION&navtype=RT [Verified 17 September 2009]

Winter H Robinson DG Heldt HW 1993 Subcellular volumes and metabolite concentrations in barley leaves. Planta 191 180 190 doi:10.1007/BF00199748

Xu HX Jiang XY Zhan KH Cheng XY Chen XJ Pardo JM Cui DQ 2008 Functional characterization of a wheat plasma membrane Na+/H+ antiporter in yeast. Archives of Biochemistry and Biophysics 473 8 15

Xue ZY Zhi DY Xue GP Zhang H Zhao YX Xia GM 2004 Enhanced salt tolerance of transgenic wheat (Triticum aestivum L.) expressing a vacuolar Na+/H+ antiporter gene with improved grain yields in saline soils in the field and a reduced level of leaf Na+. Plant Science 167 849 859

Yeo AR Flowers TJ 1983 Varietal differences in the toxicity of sodium-ions in rice leaves. Physiologia Plantarum 59 189 195 doi:10.1111/j.1399-3054.1983.tb00756.x

Yu JN Huang H Wang ZN Zhang JS Chen SY 2007 An Na+/H+ antiporter gene from wheat plays an important role in stress tolerance. Journal of Biosciences 32 1153 1161 doi:10.1007/s12038-007-0117-x

Supplementary MaterialSupplementary Material (79 KB) Export Citation