Functional Plant Biology Functional Plant Biology Society
Plant function and evolutionary biology

Simultaneous phenotyping of leaf growth and chlorophyll fluorescence via GROWSCREEN FLUORO allows detection of stress tolerance in Arabidopsis thaliana and other rosette plants

Marcus Jansen A , Frank Gilmer A , Bernhard Biskup A , Kerstin A. Nagel A , Uwe Rascher A , Andreas Fischbach A , Sabine Briem A , Georg Dreissen A , Susanne Tittmann A , Silvia Braun A , Iris De Jaeger B , Michael Metzlaff B , Ulrich Schurr A , Hanno Scharr A and Achim Walter A C

A Institute of Chemistry and Dynamics of the Geosphere ICG-3 (Phytosphere), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany.

B Bayer BioScience N.V., Technologiepark 38, 9052 Gent, Belgium.

C Corresponding author. Email:

This paper originates from a presentation at the 1st International Plant Phenomics Symposium, Canberra, Australia, April 2009.

Functional Plant Biology 36(11) 902-914
Submitted: 30 April 2009  Accepted: 3 August 2009   Published: 5 November 2009


Stress caused by environmental factors evokes dynamic changes in plant phenotypes. In this study, we deciphered simultaneously the reaction of plant growth and chlorophyll fluorescence related parameters using a novel approach which combines existing imaging technologies (GROWSCREEN FLUORO). Three different abiotic stress situations were investigated demonstrating the benefit of this approach to distinguish between effects related to (1) growth, (2) chlorophyll-fluorescence, or (3) both of these aspects of the phenotype. In a drought stress experiment with more than 500 plants, poly(ADP-ribose) polymerase (PARP) deficient lines of Arabidopsis thaliana (L.) Heynh showed increased relative growth rates (RGR) compared with C24 wild-type plants. In chilling stress, growth of PARP and C24 lines decreased rapidly, followed by a decrease in Fv/Fm. Here, PARP-plants showed a more pronounced decrease of Fv/Fm than C24, which can be interpreted as a more efficient strategy for survival in mild chilling stress. Finally, the reaction of Nicotiana tabacum L. to altered spectral composition of the intercepted light was monitored as an example of a moderate stress situation that affects chlorophyll-fluorescence related, but not growth-related parameters. The examples investigated in this study show the capacity for improved plant phenotyping based on an automated and simultaneous evaluation of growth and photosynthesis at high throughput.

Additional keywords: chilling stress, drought, dynamic processes, image processing, Nicotiana tabacum, PARP, phenomics.


Adams WW III Demmig-Adams B Verhoeven AS Barker DH 1995 ‘Photoinhibition’ during winter stress – involvement of sustained xanthophyll cycle-dependent energy dissipation. Australian Journal of Plant Physiology 22 261 276 doi:10.1071/PP9950261

Allen DJ Nogues S Baker NR 1998 Ozone depletion and increased UV-B radiation: is there a real threat to photosynthesis? Journal of Experimental Botany 49 1775 1788 doi:10.1093/jexbot/49.328.1775

Baker NR 2008 Chlorophyll fluorescence: a probe of photosynthesis in vivo. Annual Review of Plant Biology 59 89 113 doi:10.1146/annurev.arplant.59.032607.092759

Baker NR Rosenqvist E 2004 Applications of chlorophyll fluorescence can improve crop production strategies: an examination of future possibilities. Journal of Experimental Botany 55 1607 1621 doi:10.1093/jxb/erh196

Barbagallo RP Oxborough K Pallett KE Baker NR 2003 Rapid, noninvasive screening for perturbations of metabolism and plant growth using chlorophyll fluorescence imaging. Plant Physiology 132 485 493 doi:10.1104/pp.102.018093

Berglund T 1994 Nicotinamide, a missing link in the early stress-response in eukaryotic cells – a hypothesis with special reference to oxidative stress in plants. FEBS Letters 351 145 149 doi:10.1016/0014-5793(94)00850-7

Biskup B Scharr H Fischbach A Wiese-Klinkenberg A Schurr U Walter A 2009 Diel growth cycle of isolated leaf discs analyzed with a novel, high-throughput three-dimensional imaging method is identical to that of intact leaves. Plant Physiology 149 1452 1461 doi:10.1104/pp.108.134486

Boyer JS 1982 Plant productivity and environment. Science 218 443 448 doi:10.1126/science.218.4571.443

Butler WL 1978 Energy-distribution in photo-chemical apparatus of photosynthesis. Annual Review of Plant Physiology and Plant Molecular Biology 29 345 378

Chaerle L Van Der Straeten D 2001 Seeing is believing: imaging techniques to monitor plant health. Biochimica et Biophysica Acta 1519 153 166

De Block M Verduyn C De Brouwer D Cornelissen M 2005 Poly(ADP-ribose) polymerase in plants affects energy homeostasis, cell death and stress tolerance. The Plant Journal 41 95 106

Ehlert B Hincha D 2008 Chlorophyll fluorescence imaging accurately quantifies freezing damage and cold acclimation responses in Arabidopsis leaves. Plant Methods 4 12 doi:10.1186/1746-4811-4-12

Fiscus EL Booker FL 1995 Is increased UV-B a threat to crop photosynthesis and productivity? Photosynthesis Research 43 81 92 doi:10.1007/BF00042965

Genty B Briantais JM Baker NR 1989 The relationship between the quantum yield of photosynthetic electron-transport and quenching of chlorophyll fluorescence. Biochimica et Biophysica Acta 990 87 92

Gilmore AM Ball MC 2000 Protection and storage of chlorophyll in overwintering evergreens. Proceedings of the National Academy of Sciences of the United States of America 97 11098 11101

Granier C Aguirrezabal L Chenu K Cookson SJ Dauzat M et al 2006 PHENOPSIS, an automated platform for reproducible phenotyping of plant responses to soil water deficit in Arabidopsis thaliana permitted the identification of an accession with low sensitivity to soil water deficit. New Phytologist 169 623 635 doi:10.1111/j.1469-8137.2005.01609.x

Kim MY Zhang T Kraus WL 2005 Poly(ADP-ribosyl)ation by PARP-1: ‘PAR-laying’ NAD(+) into a nuclear signal. Genes & Development 19 1951 1967 doi:10.1101/gad.1331805

Knight H Knight MR 2001 Abiotic stress signalling pathways: specificity and cross-talk. Trends in Plant Science 6 262 267 doi:10.1016/S1360-1385(01)01946-X

Leister D Varotto C Pesaresi P Niwergall A Salamini F 1999 Large-scale evaluation of plant growth in Arabidopsis thaliana by non-invasive image analysis. Plant Physiology and Biochemistry 37 671 678 doi:10.1016/S0981-9428(00)80097-2

Lepiniec L Babiychuk E Kushnir S Vanmontagu M Inze D 1995 Characterization of an Arabidopsis thaliana cDNA homolog to animal poly(ADP-Ribose) polymerase. FEBS Letters 364 103 108 doi:10.1016/0014-5793(95)00335-7

Maxwell K Johnson GN 2000 Chlorophyll fluorescence – a practical guide. Journal of Experimental Botany 51 659 668 doi:10.1093/jexbot/51.345.659

Mittler R 2006 Abiotic stress, the field environment and stress combination. Trends in Plant Science 11 15 19 doi:10.1016/j.tplants.2005.11.002

Montes JM Melchinger AE Reif JC 2007 Novel throughput phenotyping platforms in plant genetic studies. Trends in Plant Science 12 433 436 doi:10.1016/j.tplants.2007.08.006

Niyogi KK Grossman AR Björkman O 1998 Arabidopsis mutants define a central role for the xanthophyll cycle in the regulation of photosynthetic energy conversion. The Plant Cell 10 1121 1134

Noctor G Foyer CH 1998 Ascorbate and glutathione: keeping active oxygen under control. Annual Review of Plant Physiology and Plant Molecular Biology 49 249 279

Öquist G Huner NP 2003 Photosynthesis of overwintering evergreen plants. Annual Review of Plant Biology 54 329 355 doi:10.1146/annurev.arplant.54.072402.115741

Osmond CB Daley PF Badger MR Lüttge U 1998 Chlorophyll fluorescence quenching during photosynthetic induction in leaves of Abutilon striatum Dicks. infected with Abutilon mosaic virus, observed with a field-portable imaging system. Botanica Acta 111 390 397

Pearce RS 1999 Molecular analysis of acclimation to cold. Plant Growth Regulation 29 47 76

Rajendran K Tester M Roy SJ 2009 Quantifying the three main components of salinity tolerance in cereals. Plant, Cell & Environment 32 237 249 doi:10.1111/j.1365-3040.2008.01916.x

Rongvaux A Andris F Van Gool F Leo O 2003 Reconstructing eukaryotic NAD metabolism. BioEssays 25 683 690 doi:10.1002/bies.10297

Rozema J van de Staaij J Björn LO Caldwell M 1997 UV-B as an environmental factor in plant life: stress and regulation. Trends in Ecology & Evolution 12 22 28 doi:10.1016/S0169-5347(96)10062-8

Satoh MS Poirier GG Lindahl T 1994 Dual function for poly(ADP-Ribose) synthesis in response to DNA strand breakage. Biochemistry 33 7099 7106 doi:10.1021/bi00189a012

Schreiber U (2004) Pulse-amplitude-modulation (PAM) fluorometry and saturation pulse method: an overview. In ‘Chlorophyll a fluorescence: a signature of photosynthesis’. (Eds GC Papageorgiou, Govindjee) pp. 279–309. (Springer-Verlag: Dordrecht, The Netherlands)

Schreiber V Dantzer F Ame JC de Murcia G 2006 Poly(ADP-ribose): novel functions for an old molecule. Nature Reviews. Molecular Cell Biology 7 517 528 doi:10.1038/nrm1963

Schurr U Walter A Rascher U 2006 Functional dynamics of plant growth and photosynthesis–from steady-state to dynamics – from homogeneity to heterogeneity. Plant, Cell & Environment 29 340 352 doi:10.1111/j.1365-3040.2005.01490.x

Scovassi AI Izzo R Franchi E Bertazzoni U 1986 Structural analysis of poly(ADP-ribose) polymerase in higher and lower eukaryotes. European Journal of Biochemistry 159 77 84 doi:10.1111/j.1432-1033.1986.tb09835.x

Seki M Umezawa T Urano K Shinozaki K 2007 Regulatory metabolic networks in drought stress responses. Current Opinion in Plant Biology 10 296 302 doi:10.1016/j.pbi.2007.04.014

Sultan SE 2000 Phenotypic plasticity for plant development, function and life history. Trends in Plant Science 5 537 542 doi:10.1016/S1360-1385(00)01797-0

Tsormpatsidis E Henbest RGC Davis FJ Battey NH Hadley P Wagstaffe A 2008 UV irradiance as a major influence on growth, development and secondary products of commercial importance in Lollo Rosso lettuce ‘revolution’ grown under polyethylene films. Environmental and Experimental Botany 63 232 239 doi:10.1016/j.envexpbot.2007.12.002

Vanderauwera S De Block M Van de Steene N van de Cotte B Metzlaff M Van Breusegem F 2007 Silencing of poly(ADP-ribose) polymerase in plants alters abiotic stress signal transduction. Proceedings of the National Academy of Sciences of the United States of America 104 15150 15155 doi:10.1073/pnas.0706668104

Walter A Rascher U Osmond B 2004 Transitions in photosynthetic parameters of midvein and interveinal regions of leaves and their importance during leaf growth and development. Plant Biology 6 184 191 doi:10.1055/s-2004-817828

Walter A Scharr H Gilmer F Zierer R Nagel KA et al 2007 Dynamics of seedling growth acclimation towards altered light conditions can be quantified via GROWSCREEN: a setup and procedure designed for rapid optical phenotyping of different plant species. New Phytologist 174 447 455 doi:10.1111/j.1469-8137.2007.02002.x

Walter A Silk WK Schurr U 2009 Environmental effects on spatial and temporal patterns of leaf and root growth. Annual Review of Plant Biology 60 279 304 doi:10.1146/annurev.arplant.59.032607.092819

Walters RG Shephard F Rogers JJM Rolfe SA Horton P 2003 Identification of mutants of Arabidopsis defective in acclimation of photosynthesis to the light environment. Plant Physiology 131 472 481 doi:10.1104/pp.015479

Woo N Badger M Pogson B 2008 A rapid, non-invasive procedure for quantitative assessment of drought survival using chlorophyll fluorescence. Plant Methods 4 27 doi:10.1186/1746-4811-4-27

Xiong L Schumaker KS Zhu JK 2002 Cell signaling during cold, drought, and salt stress. The Plant Cell 14 S165 S183

Zhu JK 2002 Salt and drought stress signal transduction in plants. Annual Review of Plant Biology 53 247 273

Export Citation Cited By (94)