Functional Plant Biology Functional Plant Biology Society
Plant function and evolutionary biology

Elevated CO2 atmosphere promotes plant growth and inulin production in the cerrado species Vernonia herbacea

Vanessa F. Oliveira A , Lilian B. P. Zaidan A , Márcia R. Braga A , Marcos P. M. Aidar A and Maria Angela M. Carvalho A B

A Seção de Fisiologia e Bioquímica de Plantas, Instituto de Botânica, C. Postal 3005, 01061-970 – São Paulo, SP, Brasil.

B Corresponding author. Email:

Functional Plant Biology 37(3) 223-231
Submitted: 27 June 2009  Accepted: 22 October 2009   Published: 25 February 2010


Carbon allocation in biomass is an important response of plants to the increasing atmospheric [CO2]. The effects of elevated [CO2] are scarcely reported in fructan-accumulating plants and even less in tropical wild species storing this type of carbohydrate. In the present study, the effects of high [CO2] atmosphere was evaluated on growth, biomass allocation and fructan metabolism in Vernonia herbacea (Vell.) Rusby, an Asteraceae from the Brazilian cerrado, which accumulates inulin-type fructans in the underground organs (rhizophores). Plants were cultivated for 120 days in open-top chambers (OTCs) under ambient (~380 μmol mol–1), and elevated (~760 μmol mol–1) [CO2]. Plant growth, photosynthesis, fructan contents, and the activities of fructan metabolising enzymes were analysed in the rhizophores at Time 0 and 15, 30, 60, 90 and 120 days. Plants under elevated [CO2] presented increases in height (40%), photosynthesis (63%) and biomass of aerial (32%) and underground (47%) organs when compared with control plants. Under elevated [CO2] plants also presented higher 1-SST, 1-FFT and invertase activities and lower 1-FEH activity. Although fructan concentration remained unchanged, fructan productivity was higher in plants maintained under elevated [CO2], due to their higher rhizophore biomass. This is the first report on the effects of elevated [CO2] on a plant species bearing underground organs that accumulate fructans. Our results indicate that plants of V. herbacea can benefit from elevated atmospheric [CO2] by increasing growth and carbon allocation for the production of inulin, and may contribute to predict a future scenario for the impact of this atmospheric condition on the herbaceous vegetation of the cerrado.

Additional keywords: carbon partition, fructan active enzymes, non-structural carbohydrates, reserve organs.


Aidar MPM , Martinez CA , Costa AC , Costa PMF , Dietrich SMC , Buckeridge MS (2002) Effect of atmospheric CO2 enrichment on the establishment of seedlings of jatobá, Hymenaea courbaril L. (Leguminosae, Caesalpinioideae). Biota Neotropica 2 BN01602012002 . Available at

Ainsworth EA Long SP 2005 What have we learned from 15 years of free-air CO2 enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2. New Phytologist 165 351 372 doi:10.1111/j.1469-8137.2004.01224.x

Asega AF Carvalho MAM 2004 Fructan metabolising enzymes in rhizophores of Vernonia herbacea upon excision of aerial organs. Plant Physiology and Biochemistry 42 313 319 doi:10.1016/j.plaphy.2004.02.005

Asega AF Nascimento JRO Schroeven L Van den Ende W Carvalho MAM 2008 Cloning, characterization and functional analysis of a 1-FEH cDNA from Vernonia herbacea (Vell.) Rusby. Plant & Cell Physiology 49 1185 1195 doi:10.1093/pcp/pcn094

Baxter R Ashender TW Farrar JF 1997 Effect of elevated CO2 and nutrient status on growth, dry matter partitioning and nutrient content of Poa alpina var. vivipara L. Journal of Experimental Botany 48 1477 1486 doi:10.1093/jxb/48.7.1477

Bazzaz FA 1990 The response of natural ecosystems to the rising global CO2 levels. Annual Review of Ecology and Systematics 21 167 196 doi:10.1146/

Bradford MM 1976 A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72 248 254 doi:10.1016/0003-2697(76)90527-3

Braga MR Pessoni RAB Dietrich SMC 1998 Cell wall polysaccharide composition of leaves of tropical Rubiaceae differing in phytoalexin response. Revista Brasileira de Fisiologia Vegetal 10 71 78

Carvalho MAM Dietrich SM 1993 Variation in fructan content in the underground organs of Vernonia herbacea (Vell.) Rusby at different phenological phases. New Phytologist 123 735 740

Carvalho MAM Zaidan LBP Dietrich SMC 1997 Growth and fructan content of plants of Vernonia herbacea (Asteraceae) regenerated from rhizophores. New Phytologist 136 153 161 doi:10.1111/j.1469-8137.1997.tb04742.x

Carvalho MAM Pinto MM Figueiredo-Ribeiro RCL 1998 Inulin production by Vernonia herbacea as influenced by mineral fertilization and time of harvest. Revista brasileira de Botânica 21 275 280

Carvalho MAM , Asega AF , Figueiredo-Ribeiro RCL (2007) Fructans in Asteraceae from the Brazilian cerrado. In ‘Recent advances in fucto-oligosaccharides research’. (Eds N Shiomi, N Benkeblia, S Onodera) pp. 67–91. (Research Signpost: Kerala, India)

Cutter EG (1992) Structure and development of the potato plant. In ‘The potato crop – the scientific basis for improvement’. (Ed. PM Harris) pp. 70–152. (Chapman & Hall: London)

Cuzzuol GRF Carvalho MAM Zaidan LBP Furlan PR 2005 a Soluções nutritivas para o cultivo e a produção de frutanos em plantas de Vernonia herbacea. Pesquisa Agropecuaria Brasileira 40 911 917

Cuzzuol GRF Carvalho MAM Zaidan LBP 2005 b Growth, photosynthate partitioning and fructan accumulation in plants of Vernonia herbacea (Vell.) Rusby under two nitrogen levels. Brazilian Journal of Plant Physiology 17 401 410 doi:10.1590/S1677-04202005000400008

Demmers-Derks H Mitchell RAC Mitchell VJ Lawlor DW 1998 Response of sugar beet (Beta vulgaris L.) yield and biochemical composition to elevated CO2 and temperature at two nitrogen applications. Plant, Cell & Environment 21 829 836 doi:10.1046/j.1365-3040.1998.00327.x

Dias-Tagliacozzo GM Figueiredo-Ribeiro RCL Carvalho MAM Dietrich SMC 1999 Fructan variation in the rhizophores of Vernonia herbacea (Vell.) Rusby, as influenced by temperature. Revista brasileira de Botânica 22 267 273

Dias-Tagliacozzo GM Itaya NM Carvalho MAM Figueiredo-Ribeiro RCL Dietrich SMC 2004 Fructans and water suppression on intact and fragmented rhizophores of Vernonia herbacea. Brazilian Archives of Biology and Technology 47 363 373

Drake BG Gonzàlez-Meler MA Long SP 1997 More efficient plants: a consequence of rising atmospheric CO2? Annual Review of Plant Physiology and Plant Molecular Biology 48 609 639 doi:10.1146/annurev.arplant.48.1.609

Dubois M Gilles KA Hamilton JK Rebels PA Smith F 1956 Colorimetric methods for determination of sugars and related substances. Analytical Chemistry 28 350 356 doi:10.1021/ac60111a017

Earth System Research Laboratory (2009) Earth System Research Laboratory. Available at [Accessed 10 June 2009]

Edelman J Jefford TG 1968 The mechanism of fructosan metabolism in higher plants as exemplified in Helianthus tuberosus. New Phytologist 67 517 531 doi:10.1111/j.1469-8137.1968.tb05480.x

Farrar JF 1996 Sinks – integral parts of a whole plant. Journal of Experimental Botany 47 1273 1279

Högy P Fangmeier A 2009 Atmospheric CO2 enrichment affects potatoes: 1. Aboveground biomass production and tuber yield. European Journal of Agronomy 30 78 84

Hunt R (1978) ‘Plant growth analysis.’ (The Camelot Press: London)

IPCC (2007) ‘Climate change 2007: mitigation. Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change.’ (Eds B Metz, OR Davidson, PR Bosch, R Dave, LA Meyer) (Cambridge University Press: Cambridge)

Isopp H Frehner M Almeida JPF Blum H Daepp M Hartwig UA Lüscher A Suter D Nösberger J 2000 Nitrogen plays a major role in leaves when source-sink relations change: C and N metabolism in Lolium perenne growing under free air CO2 enrichment. Australian Journal of Plant Physiology 27 851 858 doi:10.1071/PP99151

Jermyn MA 1956 A new method for the determination of ketohexoses in presence of aldohexoses. Nature 177 38 39 doi:10.1038/177038a0

Kimball BA 1983 Carbon dioxide and agricultural yield: an assemblage and analysis of 430 prior observations. Agronomy Journal 75 779 788

Livingston DP III Hincha DK Heyer AG 2009 Fructan and its relationship to abiotic stress tolerance in plants. Cellular and Molecular Life Sciences

Long SP Ainsworth EA Rogers A Ort DR 2004 Rising atmospheric carbon dioxide: plants face the future. Annual Review of Plant Biology 55 591 628 doi:10.1146/annurev.arplant.55.031903.141610

Martinoia E 1992 Transport processes in vacuoles of higher plants. Botanica Acta 105 232 245

Marx SP Nosberger J Frehner M 1997 Seasonal variation of fructan-β-fructosidase (FEH) activity and characterization of a β-(2,1)-linkage specific FEH from tubers of Jerusalem artichoke (Helianthus tuberosus). New Phytologist 135 267 277

Miglietta F Magliulo V Bindi M Cerio L Vaccari FP Luduca V Peressotti A 1998 Free air CO2 enrichment of potato (Solanum tuberosum L.): development, growth and yield. Global Change Biology 4 163 172 doi:10.1046/j.1365-2486.1998.00120.x

Morison JIL Lawlor DW 1999 Interactions between increasing CO2 concentration and temperature on plant growth. Plant, Cell & Environment 22 659 682 doi:10.1046/j.1365-3040.1999.00443.x

Pollock CJ Cairns AJ 1991 Fructan metabolism in grasses and cereals. Annual Review of Plant Physiology and Plant Molecular Biology 42 77 101 doi:10.1146/annurev.pp.42.060191.000453

Poorter H , Garnier E (2007) Ecological significance of inherent variation in relative growth rate. In ‘Functional plant ecology’. (Eds F Pugnaire, F Valladares) pp. 67–100. (CRC Press: Boca Raton, FL)

Portes MT Carvalho MAM 2006 Spatial distribution of fructans and fructan metabolizing enzymes in rhizophores of Vernonia herbacea (Vell.) Rusby in different developmental phases. Plant Science 170 624 633 doi:10.1016/j.plantsci.2005.10.017

Portes MT Figueiredo-Ribeiro RCL Carvalho MAM 2008 Low temperature and defoliation affect fructan-metabolizing enzymes in different regions of the rhizophores of Vernonia herbacea. Journal of Plant Physiology 165 1572 1581 doi:10.1016/j.jplph.2008.01.004

Pritchard SG Rogers HH Prior SA Peterson CM 1999 Elevated CO2 and plant structure: a review. Global Change Biology 5 807 837 doi:10.1046/j.1365-2486.1999.00268.x

Ritsema T Smeekens S 2003 Fructans: beneficial for plants and humans. Current Opinion in Plant Biology 6 223 230 doi:10.1016/S1369-5266(03)00034-7

Roberfroid MB 2005 Introducing inulin-type fructans. British Journal of Nutrition 93 S13 S25 doi:10.1079/BJN20041350

Rogers A Allen DJ Davey PA Morgan PB Ainsworth EA et al 2004 Leaf photosynthesis and carbohydrate dynamics of soybeans growth throughout their life-cycle under free-air carbon dioxide enrichment. Plant, Cell & Environment 27 449 458 doi:10.1111/j.1365-3040.2004.01163.x

Shipley B 2006 Net assimilation rate, specific leaf area and leaf mass ratio: which is most closely correlated with relative growth rate? A meta-analysis. Functional Ecology 20 565 574 doi:10.1111/j.1365-2435.2006.01135.x

Sild E Younis S Pleijel H Selldén G 1999 Effect of CO2 enrichment on non-structural carbohydrates in leaves, stems and ears of spring wheat. Physiologia Plantarum 107 60 67 doi:10.1034/j.1399-3054.1999.100109.x

Smart DR Chatterton NJ Bugbee B 1994 The influence of elevated CO2 on non-structural carbohydrate distribution and fructan accumulation in wheat canopies. Plant, Cell & Environment 17 435 442 doi:10.1111/j.1365-3040.1994.tb00312.x

Somogyi M 1945 A new reagent for the determination of sugars. The Journal of Biological Chemistry 160 61 63

Stitt M 1991 Rising CO2 levels and their potential significance for carbon flow in photosyntetic cells. Plant, Cell & Environment 14 741 762

Tertuliano MF Figueiredo-Ribeiro RCL 1993 Distribution of fructose polymers in herbaceous species of Asteraceae from the cerrado. New Phytologist 123 741 749 doi:10.1111/j.1469-8137.1993.tb03785.x

Updegraff UM 1969 Semimicro determination of cellulose in biological materials. Analytical Biochemistry 32 420 424 doi:10.1016/S0003-2697(69)80009-6

Van den Ende W Michiels A De Roover J Van Laere A 2002 Fructan biosynthetic and breakdown enzymes in dicots evolved from different invertases. Expression of fructan genes throughout chicory development. The Scientific World Journal 2 1281 1295 doi:10.1100/tsw.2002.288

Van den Ende W Clerens S Vergauwen R Van Riet L Van Laere A Yoshida M Kawakami A 2003 Fructan 1-exohydrolases: β-(2,1) trimmers during graminan biosynthesis in stems of wheat? Purification, characterization, mass mapping and cloning of two fructan 1-exohydrolase isoforms. Plant Physiology 131 621 631 doi:10.1104/pp.015305

Wang C Tillberg JE 1996 Effects of nitrogen deficiency on accumulation of fructan and fructan metabolizing enzyme activities in sink and source leaves of barley (Hordeum vulgare). Physiologia Plantarum 97 339 345 doi:10.1034/j.1399-3054.1996.970218.x

Wheeler TR Morison JLL Ellis RH Hadley P 1994 The effect of CO2, temperature and their interation on the growth and yield of carrot (Daucus carota L.). Plant, Cell & Environment 17 1275 1284 doi:10.1111/j.1365-3040.1994.tb00529.x

Export Citation