Register      Login
Functional Plant Biology Functional Plant Biology Society
Plant function and evolutionary biology
REVIEW

Retrotransposon-based molecular markers for assessment of genomic diversity

Ahmed M. Alzohairy A , Gábor Gyulai B , Mohamed F. Ramadan C , Sherif Edris D E F , Jamal S. M. Sabir D , Robert K. Jansen D G , Hala F. Eissa H I and Ahmed Bahieldin D F J
+ Author Affiliations
- Author Affiliations

A Genetics Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt.

B Institute of Genetics and Biotechnology, St. István University, Gödöllő, H-2103, Hungary.

C Biochemistry Department, Faculty of Agriculture, Zagazig University, Zagazig, Egypt.

D King Abdulaziz University, Faculty of Science, Department of Biological Sciences, Genomics and Biotechnology Section, Jeddah 21589, Saudi Arabia.

E Princess Al-Jawhara Al-Brahim Centre of Excellence in Research of Hereditary Disorders (PACER-HD), Faculty of Medicine, King Abdulaziz University (KAU), Jeddah, Saudi Arabia.

F Genetics Department, Faculty of Agriculture, Ain Shams University, Cairo 11241, Egypt.

G Department of Integrative Biology, University of Texas at Austin, Austin, TX 78712, USA.

H Agricultural Genetic Engineering Research Institute (AGERI), Agriculture Research Center (ARC), Giza, Egypt.

I Faculty of Biotechnology, Misr University for Science and Technology (MUST), 6th October City, Egypt.

J Corresponding author: Email: bahieldin55@gmail.com

Functional Plant Biology 41(8) 781-789 https://doi.org/10.1071/FP13351
Submitted: 6 December 2013  Accepted: 19 February 2014   Published: 9 April 2014

Abstract

Retrotransposons (RTs) are major components of most eukaryotic genomes. They are ubiquitous, dispersed throughout the genome, and their abundance correlates with genome size. Their copy-and-paste lifestyle in the genome consists of three molecular steps involving transcription of an RNA copy from the genomic RT, followed by reverse transcription to generate cDNA, and finally, reintegration into a new location in the genome. This process leads to new genomic insertions without excision of the original element. The target sites of insertions are relatively random and independent for different taxa; however, some elements cluster together in ‘repeat seas’ or have a tendency to cluster around the centromeres and telomeres. The structure and copy number of retrotransposon families are strongly influenced by the evolutionary history of the host genome. Molecular markers play an essential role in all aspects of genetics and genomics, and RTs represent a powerful tool compared with other molecular and morphological markers. All features of integration activity, persistence, dispersion, conserved structure and sequence motifs, and high copy number suggest that RTs are appropriate genomic features for building molecular marker systems. To detect polymorphisms for RTs, marker systems generally rely on the amplification of sequences between the ends of the RT, such as (long-terminal repeat)-retrotransposons and the flanking genomic DNA. Here, we review the utility of some commonly used PCR retrotransposon-based molecular markers, including inter-primer binding sequence (IPBS), sequence-specific amplified polymorphism (SSAP), retrotransposon-based insertion polymorphism (RBIP), inter retrotransposon amplified polymorphism (IRAP), and retrotransposon-microsatellite amplified polymorphism (REMAP).

Additional keywords: IPBS, IRAP, molecular markers, RBIP, REMAP, retrotransposon, SSAP.


References

Alzohairy AM, Yousef MA, Edris SS, Kerti B, Gyulai G (2012) Detection of long terminal repeat (LTR) retrotransposons reactivation induced by in vitro environmental stresses in barley (Hordeum vulgare) via reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Life Science Journal 9, 5019–5026.

Alzohairy AM, Gyulai G, Jansen RK, Bahieldin A (2013) Transposable elements domesticated and neofunctionalized by eukaryotic genomes. Plasmid 69, 1–15.
Transposable elements domesticated and neofunctionalized by eukaryotic genomes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtlKjsrnP&md5=a538e50feb9333ac3928cab51c98d9c8CAS | 22960324PubMed |

Alzohairy AM, Sabir JSM, Gyulai G, Younis RA, Jansen RK, Bahieldin A (2014) Environmental stress activation of plant long-terminal repeat retrotransposons. Functional Plant Biology 41, 557–567.
Environmental stress activation of plant long-terminal repeat retrotransposons.Crossref | GoogleScholarGoogle Scholar |

Baumel A, Ainouche M, Kalendar R, Schulman AH (2002) Inter-retrotransposon amplified polymorphism (IRAP), and retotransposon-microsatellite amplified polymorphism (REMAP) in populations of the young allopolyploid species Spartina (Spartina SP.) angelica Hubbard (Poaceae). Molecular Biology and Evolution 19, 1218–1227.
Inter-retrotransposon amplified polymorphism (IRAP), and retotransposon-microsatellite amplified polymorphism (REMAP) in populations of the young allopolyploid species Spartina (Spartina SP.) angelica Hubbard (Poaceae).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XmtF2ku7s%3D&md5=5dbda0a4f6cc8622e3ab1dfc93540140CAS | 12140233PubMed |

Boyko E, Kalendar R, Korzun V, Gill B, Schulman AH (2002) Combined mapping of Aegilops tauschii by retrotransposon, microsatellite, and gene markers. Plant Molecular Biology 48, 767–789.
Combined mapping of Aegilops tauschii by retrotransposon, microsatellite, and gene markers.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XjsFWrt7Y%3D&md5=bf02ebdde4de42ae7418f33a91691c79CAS | 11999849PubMed |

Branco CJS, Vieira EA, Malone G, Kopp MM, Malone E, Bernardes A, Mistura CC, Carvalho FIF, Oliveira CA (2007) IRAP and REMAP assessments of genetic similarity in rice (Oryza sativa). Journal of Applied Genetics 48, 107–113.
IRAP and REMAP assessments of genetic similarity in rice (Oryza sativa).Crossref | GoogleScholarGoogle Scholar |

Brik AF, Kalendar RN, Stratula OP, Sivolap IuM (2006) IRAP and REMAP analyses of barley (Hordeum vulgare) varieties of Odessa breeding. TSitologiia i genetika 3, 24–33.

Chadha S, Gopalakrishna T (2005) Retrotransposon-microsatellite amplified polymorphism (REMAP) markers for genetic diversity assessment of the rice (Oryza sativa) blast pathogen (Magnaporthe grisea). Genome 48, 943–945.
Retrotransposon-microsatellite amplified polymorphism (REMAP) markers for genetic diversity assessment of the rice (Oryza sativa) blast pathogen (Magnaporthe grisea).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XkslSltw%3D%3D&md5=aec015a1823fab54f009e6ca0619d086CAS | 16391701PubMed |

Chesnay C, Kumar A, Pearce SR (2007) Genetic diversity of SIRE-1 retroelements in annual and perennial Glycine species revealed using SSAP. Cellular & Molecular Biology Letters 12, 103–110.
Genetic diversity of SIRE-1 retroelements in annual and perennial Glycine species revealed using SSAP.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXpslensb4%3D&md5=ac662b0e72e4400a29876c693597d6c8CAS |

Ellis THN, Poyser SJ, Knox MR, Vershinin AV, Ambrose MJ (1998) Ty1-copia class retrotransposon insertion site polymorphism for linkage and diversity analysis in pea. Molecular & General Genetics 260, 9–19.
Ty1-copia class retrotransposon insertion site polymorphism for linkage and diversity analysis in pea.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXnvFKhurw%3D&md5=d89872b65829a17c9efd4855a79089ffCAS |

Feschotte C, Jiang N, Wessler SR (2002) Plant transposable elements: where genetics meets genomics. Nature Reviews. Genetics 3, 329–341.
Plant transposable elements: where genetics meets genomics.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xjs1yhtLw%3D&md5=ebdd0d32bce1e71d9814304768dc2a54CAS | 11988759PubMed |

Flavell AJ, Knox MR, Pearce SR, Ellis THN (1998) Retrotransposon-based insertion polymorphisms (RBIP) for high throughput marker analysis. The Plant Journal 16, 643–650.
Retrotransposon-based insertion polymorphisms (RBIP) for high throughput marker analysis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXovVSntQ%3D%3D&md5=187301c643f9bf6dd2deb303e2146702CAS | 10036780PubMed |

Gao L, McCarthy EM, Ganko EW, McDonald JF (2004) Evolutionary history of Oryza sativa LTR retrotransposons: a preliminary survey of the rice (Oryza sativa) genome sequences. BMC Genomics 5, 18
Evolutionary history of Oryza sativa LTR retrotransposons: a preliminary survey of the rice (Oryza sativa) genome sequences.Crossref | GoogleScholarGoogle Scholar | 15040813PubMed |

García-Martínez J, Martínez-Izquierdo JA (2003) Study on the evolution of the grande retrotransposon in the Zea genus. Molecular Biology and Evolution 20, 831–841.
Study on the evolution of the grande retrotransposon in the Zea genus.Crossref | GoogleScholarGoogle Scholar | 12679538PubMed |

Hamdi H, Nishio H, Zielinski R, Dugaiczyk A (1999) Origin and phylogenetic distribution of Alu DNA repeats: irreversible events in the evolution of primates. Journal of Molecular Biology 289, 861–871.
Origin and phylogenetic distribution of Alu DNA repeats: irreversible events in the evolution of primates.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXjslKhsbY%3D&md5=a63632dee756740b193320c76c90ee3fCAS | 10369767PubMed |

Havecker ER, Gao X, Voytas DF (2004) The diversity of LTR retrotransposons. Genome Biology 5, 225
The diversity of LTR retrotransposons.Crossref | GoogleScholarGoogle Scholar | 15186483PubMed |

Huo H, Conner JA, Ozias-Akins P (2009) Genetic mapping of the apospory-specific genomic region in Pennisetum squamulatum using retrotransposon-based molecular markers. Theoretical and Applied Genetics 119, 199–212.
Genetic mapping of the apospory-specific genomic region in Pennisetum squamulatum using retrotransposon-based molecular markers.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXotFWhtLs%3D&md5=6ba41a677c81c9cae3d533cbc9f92d85CAS | 19370319PubMed |

IHGSC (International Human Genome Sequencing Consortium) (2001) Initial sequencing and analysis of the human genome. Nature 409, 860–921.
Initial sequencing and analysis of the human genome.Crossref | GoogleScholarGoogle Scholar | 11237011PubMed |

Jing R, Knox MR, Lee JM, Vershinin AV, Ambrose M, Ellis THN, Flavell AJ (2005) Insertional polymorphism and antiquity of PDR1 retrotransposon insertions in Pisum species. Genetics 171, 741–752.
Insertional polymorphism and antiquity of PDR1 retrotransposon insertions in Pisum species.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht1Ohu7vN&md5=17a90ed2018d9cc5880038db8c3b69faCAS | 16085698PubMed |

Jurka J, Kapitonov V, Kohany O, Jurka MIV (2007) Repetitive sequences in complex genomes: structure and evolution. Annual Review of Genomics and Human Genetics 8, 241–259.
Repetitive sequences in complex genomes: structure and evolution.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXht1WksrrN&md5=495d06c86012a19041c29059d1202033CAS | 17506661PubMed |

Kalendar R (2011) The use of retrotransposon-based molecular markers to analyze genetic diversity. Field and Vegetable Crops Research 48, 261–274.
The use of retrotransposon-based molecular markers to analyze genetic diversity.Crossref | GoogleScholarGoogle Scholar |

Kalendar R, Schulman HA (2006) IRAP and REMAP for retrotransposon-based genotyping and fingerprinting. Nature Protocols 1, 2478–2484.
IRAP and REMAP for retrotransposon-based genotyping and fingerprinting.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtFGjtLjN&md5=077eaad5486b62473048cbe5393a30bcCAS | 17406494PubMed |

Kalendar R, Grob T, Regina M, Suomeni A, Schulman A (1999) IRAP and REMAP two new retrotransposon-based DNA fingerprinting techniques. Theoretical and Applied Genetics 98, 704–711.
IRAP and REMAP two new retrotransposon-based DNA fingerprinting techniques.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXjs1yit78%3D&md5=f0ecdb5d735d60889eeecbaf01519de5CAS |

Kalendar R, Antonius K, Smykal P, Schulman AH (2010) iPBS: A universal method for DNA fingerprinting and retrotransposon isolation. Theoretical and Applied Genetics 121, 1419–1430.
iPBS: A universal method for DNA fingerprinting and retrotransposon isolation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtlehtb%2FO&md5=0ff79d978c2f6fe7eca8d6abb1519529CAS | 20623102PubMed |

Lanteri S, Acquadro A, Comino C, Mauro R, Mauromicale G, Portis E (2006) A first linkage map of globe artichoke (Cynara cardunculus var. scolymus L.) based on AFLP, S-SAP, M-AFLP and microsatellite markers. Theoretical and Applied Genetics 112, 1532–1542.
A first linkage map of globe artichoke (Cynara cardunculus var. scolymus L.) based on AFLP, S-SAP, M-AFLP and microsatellite markers.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XksFGksL8%3D&md5=e53e43480240ce7bef9b364ea140a131CAS | 16565844PubMed |

Leigh F, Kalendar R, Lea V, Lee D, Donini P, Schulman AH (2003) Comparison of the utility of barley (Hordeum vulgare) retrotransposon families for genetic analysis by molecular marker techniques. Molecular Genetics and Genomics 269, 464–474.
Comparison of the utility of barley (Hordeum vulgare) retrotransposon families for genetic analysis by molecular marker techniques.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXlsFygsb8%3D&md5=6e057443df7a40a4eb5b6b9ca830e5b1CAS | 12768410PubMed |

Manninen O, Kalendar R, Robinson J, Schulman AH (2000) Application of BARE-1 retrotransposons markers to the mapping of a major resistance gene for net blotch in barley (Hordeum vulgare). Molecular & General Genetics 264, 325–334.
Application of BARE-1 retrotransposons markers to the mapping of a major resistance gene for net blotch in barley (Hordeum vulgare).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXot1Gktb4%3D&md5=ff4fabb1160978671f41a2dbae503035CAS |

Manninen OM, Jalli M, Kalendar R, Schulman A, Afanasenko O, Robinson J (2006) Mapping of major spot-type and net-type netblotch resistance genes in the Ethiopian barley (Hordeum vulgare) line CI 9819. Genome 49, 1564–1571.
Mapping of major spot-type and net-type netblotch resistance genes in the Ethiopian barley (Hordeum vulgare) line CI 9819.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXkvFeitrY%3D&md5=e3de8d0502627a3ebcf4b18f4c533b01CAS | 17426771PubMed |

Mansour A (2007) Epigenetic activation of genomic retrotransposon. Journal of Cell and Molecular Biology 6, 99–107.

Mansour A (2008) Utilization of genomic retrotransposon as cladistic molecular markers. Journal of Cell and Molecular Biology 7, 17–28.

Mansour A (2009) Water deficit induction of Copia and Gypsy genomic retrotransposons. Plant Stress 3, 33–39.

Mansour A, Jaime A, da Silva T, Edris S, Younis RAA (2010) Comparative assessment of genetic diversity in some tomato cultivars using IRAP, ISSR and RAPD molecular markers. Genes, Genomes and Genomics 4, 41–47.

Nagy ED, Molnar I, Schneider A, Kovacs G, Molnar-Lang M (2006) Characterization of chromosome-specific S-SAP markers and their use in studying genetic diversity in Aegilops species. Genome 49, 289–296.
Characterization of chromosome-specific S-SAP markers and their use in studying genetic diversity in Aegilops species.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XmsVaht7w%3D&md5=70408c429f62ef824616b9ec79883795CAS | 16699548PubMed |

Nair AS, Teo CH, Schwarzacher T, Heslop-Harrison P (2005) Genome classification of banana cultivars from South India using IRAP markers. Euphytica 144, 285–290.
Genome classification of banana cultivars from South India using IRAP markers.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtFaht7zN&md5=7d1da5b6fb50229142d2dfe0f14d371aCAS |

Petit M, Lim KY, Julio E, Poncet C, Dorlhac de Borne F, Kovarik A, Leitch AR, Grandbastien MA, Mhiri C (2007) Differential impact of retrotransposon populations on the genome of allotetraploid tobacco (Nicotiana tabacum). Molecular Genetics and Genomics 278, 1–15.
Differential impact of retrotransposon populations on the genome of allotetraploid tobacco (Nicotiana tabacum).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXmtlGktLs%3D&md5=dc25bde7e28c7674960eac168b09c385CAS | 17375323PubMed |

Poczai P, Varga I, Laos M, Cseh A, Bell N, Valkonen JPT, Hyvönen J (2013) Advances in plant gene-targeted and functional markers: a review. Plant Methods 9, 6
Advances in plant gene-targeted and functional markers: a review.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXktFCmtrc%3D&md5=ba305271feeedcb215a8b9ab58da979aCAS | 23406322PubMed |

Queen RA, Gribbon BM, James C, Jack P, Flavell AJ (2004) Retrotransposon based molecular markers for linkage and genetic diversity analysis in wheat. Molecular Genetics and Genomics 271, 91–97.
Retrotransposon based molecular markers for linkage and genetic diversity analysis in wheat.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXht1KktLg%3D&md5=552761d8d353adb82b92b51656a86f79CAS | 14652738PubMed |

Ramallo E, Kalendar R, Schulman AH, Martinez-Izquierdo JA (2008) Reme1, a Copia retrotransposon in melon, is transcriptionally induced by UV light. Plant Molecular Biology 66, 137–150.
Reme1, a Copia retrotransposon in melon, is transcriptionally induced by UV light.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsVWqsbk%3D&md5=539eaac933d6deed553155a6cd4ee2fcCAS | 18034313PubMed |

Ribaut J-M, Hoisington DA (1998) Marker assisted selection: new tools and strategies. Trends in Plant Science 3, 236–239.
Marker assisted selection: new tools and strategies.Crossref | GoogleScholarGoogle Scholar |

Rice Chromosome 10 Sequencing Consortium (2003) In-depth view of structure, activity, and evolution of rice chromosome 10. Science 300, 1566–1569.
In-depth view of structure, activity, and evolution of rice chromosome 10.Crossref | GoogleScholarGoogle Scholar | 12791992PubMed |

Roos C, Schmitz J, Zischler H (2004) Primate jumping genes elucidate strepsirrhine phylogeny. Proceedings of the National Academy of Sciences of the United States of America 101, 10 650–10 654.
Primate jumping genes elucidate strepsirrhine phylogeny.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXmtFWmsbY%3D&md5=11eec56d1cc999a0aeb2fd305914403eCAS |

Sabot F, Schulman AH (2006) Parasitism and the retrotransposon life cycle in plants: a hitchhiker’s guide to the genome. Heredity 97, 381–388.
Parasitism and the retrotransposon life cycle in plants: a hitchhiker’s guide to the genome.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht1aku7rO&md5=acc2aee94d9a782d633274d11233358aCAS | 16985508PubMed |

Sanz AM, Gonzalez SG, Syed NH, Suso MJ, Saldaña CC, Flavell AJ (2007) Genetic diversity analysis in Vicia species using retrotransposon-based SSAP markers. Molecular Genetics and Genomics 278, 433–441.
Genetic diversity analysis in Vicia species using retrotransposon-based SSAP markers.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtVCrt7zK&md5=ea4416803294d6037d1c61f3478a9e26CAS | 17576596PubMed |

Shedlock AM, Okada N (2000) SINE insertions: powerful tools for molecular systematics. BioEssays 22, 148–160.
SINE insertions: powerful tools for molecular systematics.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXmslSht7o%3D&md5=cc0fd1173c651e4d52cd054d7bf77e86CAS | 10655034PubMed |

Syed NH, Sørensen AP, Antonise R, van de Wiel C, van der Linden CG, van’t Westende W, Hooftman DA, den Nijs HC, Flavell AJ (2006) A detailed linkage map of lettuce based on SSAP, AFLP and NBS markers. Theoretical and Applied Genetics 112, 517–527.
A detailed linkage map of lettuce based on SSAP, AFLP and NBS markers.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xnt1yjsLY%3D&md5=7cfc1d8a028032be2ca58e8677baaecaCAS | 16341837PubMed |

Tahara M, Aoki T, Suzuka S, Yamashita H, Tanaka M, Matsunaga S, Kokumai S (2004) Isolation of an active element from a high-copy-number family of retrotransposons in the sweet potato genome. Molecular Genetics and Genomics 272, 116–127.
Isolation of an active element from a high-copy-number family of retrotransposons in the sweet potato genome.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXms12lsLs%3D&md5=9049b14d4eba59396cedc199490dc5f7CAS | 15480792PubMed |

Tam SM, Mhiri C, Vogelaar A, Kerkveld M, Pearce SR, Grandbastien MA (2005) Comparative analyses of genetic diversities within tomato and pepper collections detected by retrotransposon-based SSAP, AFLP and SSR. Theoretical and Applied Genetics 110, 819–831.
Comparative analyses of genetic diversities within tomato and pepper collections detected by retrotransposon-based SSAP, AFLP and SSR.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXislantL8%3D&md5=1e8a3ff275cdc50be2fa604c601bf790CAS | 15700147PubMed |

Tanhuanpää P, Kalendar R, Schulman AH, Kiviharju E (2007) A major gene for grain cadmium accumulation in oat (Avena sativa L.). Genome 50, 588–594.
A major gene for grain cadmium accumulation in oat (Avena sativa L.).Crossref | GoogleScholarGoogle Scholar | 17632580PubMed |

Tatout C, Warwick S, Lenoir A, Deragon J-M (1999) Sine insertions as clade markers for wild Crucifer species. Molecular Biology and Evolution 16, 1614–1621.
Sine insertions as clade markers for wild Crucifer species.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXntlKjs7g%3D&md5=7b3642af298a83f15a0b42796a909626CAS |

Teo CH, Tan SH, Othman YR, Schwarzacher T (2002) The cloning of Ty1-copia-like retrotransposons from 10 varieties of banana (Musa Sp.). Journal of Biochemistry, Molecular Biology, and Biophysics 6, 193–201.
The cloning of Ty1-copia-like retrotransposons from 10 varieties of banana (Musa Sp.).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XlsFOisL8%3D&md5=f92b17dc7aca9724168a8f255896f552CAS | 12186754PubMed |

Teo CH, Tan SH, Ho CL, Faridah QZ, Othman YR, Heslop-Harrison JS, Kalendar R, Schulman AH (2005) Genome constitution and classification using retrotransposon-based markers in the orphan crop banana. Journal of Plant Biology 48, 96–105.
Genome constitution and classification using retrotransposon-based markers in the orphan crop banana.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXktlekurw%3D&md5=e8349d33623b47838a5bb48990e226ffCAS |

Tsumura Y, Ohba K, Strauss SH (1996) Diversity and inheritance of inter-simple sequence repeat polymorphisms in Douglas-fir (Pseudotsuga menziesii) and sugi (Cryptomeria japonica). Theoretical and Applied Genetics 92, 40–45.
Diversity and inheritance of inter-simple sequence repeat polymorphisms in Douglas-fir (Pseudotsuga menziesii) and sugi (Cryptomeria japonica).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28Xlt1Cmu7k%3D&md5=943922e334b731beb1fe6fd02737e5abCAS | 24166114PubMed |

Venturi S, Dondini L, Donini P, Sansavini S (2006) Retrotransposon characterisation and fingerprinting of apple clones by S-SAP markers. Theoretical and Applied Genetics 112, 440–444.
Retrotransposon characterisation and fingerprinting of apple clones by S-SAP markers.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD28%2Fhs1OmtA%3D%3D&md5=b0fab47430a5cc101e43ad49293346a5CAS | 16328231PubMed |

Vershinin AV, Alnutt TR, Knox MR, Ambrose MR, Ellis THN (2003) Transposable elements reveal the impact of introgression, rather than transposition, in Pisum diversity, evolution and domestication. Molecular Biology and Evolution 20, 2067–2075.
Transposable elements reveal the impact of introgression, rather than transposition, in Pisum diversity, evolution and domestication.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXnt12gtA%3D%3D&md5=d4769728ea3e28dcbbd260e5ea51e210CAS | 12949152PubMed |

Vitte C, Panaud O (2005) LTR retrotransposons and flowering plant genome size: emergence of the increase/decrease model. Cytogenetic and Genome Research 110, 91–107.
LTR retrotransposons and flowering plant genome size: emergence of the increase/decrease model.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXnvFyht7o%3D&md5=cb019665cb616c9234151fc572fa6b3cCAS | 16093661PubMed |

Vos P, Hogers R, Bleeker M, Reijans M, van de Lee T, Hornes M, Frijters A, Pot J, Peleman J, Kuiper M, Zabeau M (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Research 23, 4407–4414.
AFLP: a new technique for DNA fingerprinting.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXpslensbo%3D&md5=b11ee16e954b9a68b86042ff557ecb62CAS | 7501463PubMed |

Waugh R, McLean K, Flavell AJ, Pearce SR, Kumar A, Thomas BT, Powell W (1997) Genetic distribution of BARE-1 retrotransposable elements in the barley (Hordeum vulgare) genome revealed by sequence-specific amplification polymorphisms (S-SAP). Molecular & General Genetics 253, 687–694.
Genetic distribution of BARE-1 retrotransposable elements in the barley (Hordeum vulgare) genome revealed by sequence-specific amplification polymorphisms (S-SAP).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXisV2htLs%3D&md5=0bd72c7e48d176b9cf8d6aea2a26908dCAS |

Xiong Y, Eickbush TH (1990) Origin and evolution of retroelements based upon their reverse transcriptase sequences. The EMBO Journal 9, 3353–3362.

Yu G-X, Wise RP (2000) An anchored AFLP- and retrotransposon-based map of diploid Avena. Genome 43, 736–749.
An anchored AFLP- and retrotransposon-based map of diploid Avena.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXotVWlsbo%3D&md5=bf59f70d18bf8086fe1eda76c9b9b6a4CAS | 11081962PubMed |