Register      Login
Functional Plant Biology Functional Plant Biology Society
Plant function and evolutionary biology
RESEARCH ARTICLE

The Action Potential in Chara corallina: Effect of Temperature

MJ Beilby and HGJ Coster

Australian Journal of Plant Physiology 3(3) 275 - 289
Published: 1976

Abstract

An investigation has been made of the effect of temperature on excitation in cells of C. corallina. It was found that the duration both of the action potential and of the transient current during excitation under voltage clamp increased with decreasing temperature, from ~1 s at 40°C to ~30 s at 3.5°C. The form of the transient response, however, was independent of temperature. While the peak potential during an action potential was largely independent of temperature, the peak transient current during a voltage clamp increased with increasing temperature up to ~30°C. Beyond this temperature, the peak current decreased again with increasing temperature. The activation enthalphy (ΔH*) calculated from Arrhenius plots of the duration of the action potential or of the transient current under voltage clamp varied continuously with temperature, having the values of ~7 kJ/mol for T > 20°C and ~350 kJ/mol for T < 7°C. The peak of the transient conductance changes (during voltage clamp at -45 mV) increased progressively with increasing temperatures; for T < 7°C there was almost no transient change in conductance. °H* for peak transient conductance change was ~7 kJ/mol for T > 20°C and ~145 kJ/mol for T < 7°C. At low temperatures (<7°C), ΔH* for the excitation channels was similar to that for the dehydration of K+, Na+ or Cl- ions. At high temperatures (>35°C), ΔH* for both the passive and excitation channels was about the same as that for diffusion in a free solution. This suggests a progressive change in the degree of dehydration required for ion permeation in the channels. In the light of the known frequency dependence of the membrane capacitance of this species (at low frequencies), considerations are also given to the implications of the similarity in their temperature dependence, of the duration of the action potential and the duration of the transient currents during voltage clamps.

https://doi.org/10.1071/PP9760275

© CSIRO 1976

Committee on Publication Ethics


Rent Article (via Deepdyve) Export Citation Cited By (14) Get Permission

View Dimensions