Functional Plant Biology Functional Plant Biology Society
Plant function and evolutionary biology

Recovery From Water Stress in Five Sunflower (Helianthus annuus L.) Cultivars. II. The Development of Leaf Area

HM Rawson and NC Turner

Australian Journal of Plant Physiology 9(4) 449 - 460
Published: 1982


Five cultivars of sunflower with different durations to anthesis were grown in the field either entirely on stored soil moisture (DRY), irrigated frequently throughout growth (WET), or transferred from the DRY to the WET regime at 44 days (REC 1) or at 54 days from sowing (REC 2). The expansion patterns of all leaves were followed with a view to determining which leaves responded when stress was relieved.

Cultivars differed in their ability to recommence leaf expansion after water was applied to DRY crops, but any differences were related to the stage of plant development reached when water was applied. Thus in the REC 1 treatment, no leaves of early cultivars equalled the areas achieved in equivalent leaves in the WET regime, whereas the latest cultivar generated individual leaves which were 60% larger than equivalent leaves in the WET treatment. In the REC 2 treatment, few leaves of the early cultivars reached significantly larger areas than equivalent leaves in the DRY while all leaves above node 12 in the latest cultivar exceeded those in the DRY regime.

Examining the data in terms of the age of leaves in the profile when the REC 1 and REC 2 treatments were applied showed that, regardless of cultivar, all leaves which were less than 15 days old (age 0 = leaf emergence) had some capacity for renewed expansion when water was applied. However, primordia which still had 15 days to go before they emerged as leaves had the greatest capacity for expansion to a potential size, and this capacity decreased progressively over their next 30 days of aging.

Leaf age profiles did not explain all the difference in renewed expansion potential among cultivars: a leaf position factor at the time of water application was almost as important. Thus, the closer that leaves were to the head, the less was their capacity for renewed expansion regardless of their age. In order to achieve larger areas when water was applied, old leaves increased their duration of expansion while young leaves increased their rate of expansion.

It is concluded that cultivars do not differ in their ability to 'recover' leaf area upon application of water except by virtue of their different durations to anthesis.

© CSIRO 1982

Rent Article (via Deepdyve) Export Citation Cited By (24)