Register      Login
Functional Plant Biology Functional Plant Biology Society
Plant function and evolutionary biology
RESEARCH ARTICLE

Effects of CO2 Enrichment and Nitrogen Stress on Growth, and Partitioning of Dry Matter and Nitrogen in Wheat and Maize

PJ Hocking and CP Meyer

Australian Journal of Plant Physiology 18(4) 339 - 356
Published: 1991

Abstract

Atmospheric CO2 levels are increasing, but little is known about how this will affect tissue concentrations and the partitioning of agriculturally important nutrients such as nitrogen (N) within crop plants. To investigate this, a glasshouse experiment was conducted in which wheat, a C3 species, and maize, a C4 species, were grown for 8 weeks at high CO2 (1500 cm3 m-3) on N supplies ranging from deficient (0.5 mol m-3) to more than adequate for maximum growth (25 mol m-3).

Wheat responded to both CO2 enrichment and N supply; maize responded only to N supply. CO2-enriched wheat produced about twice the dry matter of control plants at all levels of N supply. Tiller and ear numbers were increased by CO2 enrichment irrespective of N supply. Enriched wheat plants had a lower Leaf Area Ratio but higher Net Assimilation Rate and Relative Growth Rate than control plants. There was no effect of CO2 enrichment on specific leaf weight. The enriched plants had lower shoot to root dry matter ratios than the controls at 6 mol m-3 N and higher. Shoot to root dry matter ratios of both wheat and maize increased with increasing N supply.

CO2-enriched wheat plants accumulated more N than the controls but the proportional increase in N content was not as great as that in dry matter, with the result that concentrations of total-N and nitrate-N were lower in all organs of enriched plants, including ears. Nitrate reductase activity was lower in enriched than in control wheat plants. N-use efficiency by wheat was increased by CO2 enrichment.

From a practical point of view, the study indicates that critical total-N and NO3-N concentrations used to diagnose the N status of wheat will need to be reassessed as global CO2 levels increase. Elevated CO2 may also reduce the protein content of grain and thus the baking quality of hard wheats.

https://doi.org/10.1071/PP9910339

© CSIRO 1991

Committee on Publication Ethics


Rent Article (via Deepdyve) Export Citation Cited By (150) Get Permission

View Dimensions

View Altmetrics