CSIRO Publishing blank image blank image blank image blank imageBooksblank image blank image blank image blank imageJournalsblank image blank image blank image blank imageAbout Usblank image blank image blank image blank imageShopping Cartblank image blank image blank image You are here: Journals > Functional Plant Biology   
Functional Plant Biology
Journal Banner
  Plant Function & Evolutionary Biology
 
blank image Search
 
blank image blank image
blank image
 
  Advanced Search
   

Journal Home
About the Journal
Editorial Board
Contacts
Content
Online Early
Current Issue
Just Accepted
All Issues
Special Issues
Research Fronts
Reviews
Evolutionary Reviews
Sample Issue
For Authors
General Information
Notice to Authors
Submit Article
Open Access
For Referees
Referee Guidelines
Review an Article
For Subscribers
Subscription Prices
Customer Service
Print Publication Dates

blue arrow e-Alerts
blank image
Subscribe to our Email Alert or RSS feeds for the latest journal papers.

red arrow Connect with us
blank image
facebook twitter youtube

red arrow PrometheusWiki
blank image
PrometheusWiki
Protocols in ecological and environmental plant physiology

 

Article << Previous     |     Next >>   Contents Vol 34(7)

Cell wall disassembly events in boysenberry (Rubus idaeus L. × Rubus ursinus Cham. & Schldl.) fruit development

Ariel Roberto Vicente A, Ann Powell A, L. Carl Greve A, John M. Labavitch A B

A Plant Sciences Department, University of California, Davis, One Shields Avenue, Mail Stop 5 Davis CA, 95616, USA.
B Corresponding author. Email: jmlabavitch@ucdavis.edu
 
PDF (286 KB) $25
 Export Citation
 Print
  


Abstract

Boysenberry fruit was harvested at five developmental stages, from green to purple, and changes in pectin and hemicellulose solubilisation and depolymerisation, polymer neutral sugar contents, and the activities of cell wall degrading enzymes were analysed. The high xylose to glucose ratio in the 4% KOH-soluble hemicellulose fraction suggests that xylans are abundant in the boysenberry cell wall. Although the cell wall changes associated with fruit development do not proceed in discrete stages and the cell wall disassembly is a consequence of highly regulated changes occurring in a continuum, the results suggest that the temporal changes in cell wall degradation in boysenberry account for at least three stages: an early stage (green to 75% red colour), associated with metabolism of cellulose and cross-linking glycans; an intermediate period (75 to 100% red colour), characterised by substantial pectin solubilisation without depolymerisation in which α-arabinofuranosidase increases markedly and 50% of the wall arabinose is lost; and a final stage (100% red colour to purple), characterised mainly by a reduction of pectic galactose content and a dramatic increase in pectin depolymerisation associated with higher polygalacturonase, pectin methylesterase, acetyl esterase and β-galactosidase activities. From a biotechnological perspective enzymes involved in pectin matrix disassembly seem to be the better candidates to affect boysenberry fruit late-softening by genetic intervention. A model for cell wall disassembly in boysenberry fruit is proposed.

Keywords: cell wall, fruit ripening, hemicellulose, pectin, polysaccharides, softening.


   
Subscriber Login
Username:
Password:  

    
Legal & Privacy | Contact Us | Help

CSIRO

© CSIRO 1996-2014