Register      Login
Functional Plant Biology Functional Plant Biology Society
Plant function and evolutionary biology
RESEARCH ARTICLE

Photoprotective carotenoids and antioxidants are more affected by canopy position than by nitrogen supply in 21-year-old Pinus radiata

Sabine Posch A B E , Charles R. Warren C , Mark A. Adams D and Helmut Guttenberger B
+ Author Affiliations
- Author Affiliations

A School of Forest and Ecosystem Science, The University of Melbourne, Water Street, Creswick, Vic. 3363, Australia.

B Department for Plant Sciences, Karl-Franzens-University Graz, Schubertstraße 51, 8010 Graz, Austria.

C School of Biological Sciences, University of Sydney, Heydon-Laurence Building A08, Sydney, NSW 2006, Australia.

D School of Biological Earth and Environmental Sciences, University of New South Wales, Sydney, NSW 2052, Australia.

E Corresponding author. Email: sposch@unimelb.edu.au

F This paper originates from a presentation at EcoFIZZ 2007, Richmond, New South Wales, Australia, September 2007.

Functional Plant Biology 35(6) 470-482 https://doi.org/10.1071/FP08124
Submitted: 14 April 2008  Accepted: 4 June 2008   Published: 4 August 2008

Abstract

Photoprotection, light harvesting and light utilisation were investigated as a function of variation in N supply and canopy position in 21-year-old Pinus radiata D. Don. Chlorophyll fluorescence, gas exchange and photoprotective compounds were measured on lower, middle and upper canopy needles in trees receiving N fertiliser and in control trees not receiving N fertiliser. Irrespective of canopy height, additional N increased the light-harvesting capacity through greater contents of chlorophyll, neoxanthin and lutein, but did not affect light-utilisation processes, such as effective quantum yield of PSII or rates of net CO2 assimilation. Additional N fertiliser did not affect the concentrations of the measured photoprotective carotenoids (violaxanthin, antheraxanthin, zeaxanthin, α-carotene and β-carotene) or antioxidants (ascorbic acid, glutathione and α-tocopherol); however, carotenoids and antioxidants were strongly affected by canopy height and increased in concentration with increasing canopy height. The present study found that pools of photoprotective carotenoids and antioxidants were not driven by imbalances in light-harvesting and light-utilisation processes, but rather by gradients in light.

Additional keywords: α-tocopherol, ascorbic acid, chlorophyll a fluorescence, chloroplast pigments, gas exchange, glutathione.


Acknowledgements

We thank Hancock Victorian Plantations and Jörg Kruse for providing the plantation, Phil Gerschwitz for excellent assistance in the field and Klaus Remele for excellent technical support in the laboratory. Sabine Posch gratefully acknowledges financial support of a DOC scholarship from the Austrian Academy of Sciences.


References


Arena C, Vitale L, De Sants AV (2005) Photosynthetic response of Quercus ilex L. plants grown on compost and exposed to increasing photon flux densities and elevated CO2. Photosynthetica 43, 615–619.
Crossref | GoogleScholarGoogle Scholar | open url image1

Asada K (1999) The water–water cycle in chloroplasts: scavenging of active oxygens and dissipation of excess photons. Annual Review of Plant Physiology and Plant Molecular Biology 50, 601–639.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Bettmann GT, Ratnayaka HH, Molin WT, Sterling TM (2006) Physiological and antioxidant responses of cotton and spurred anoda (Anoda cristata) under nitrogen deficiency. Weed Science 54, 641–650.
Crossref | GoogleScholarGoogle Scholar | open url image1

Björkman O , Demmig-Adams B (1995) Regulation of photosynthetic light capture, conversion, and dissipation in leaves of higher plants. In ‘Ecophysiology of photosynthesis’. (Eds E-D Schulze, MM Caldwell) pp. 17–47. (Springer-Verlag: Berlin)

Boardman R , Cromer RN , Lambert MJ , Webb MJ (1997) Forest plantations. In ‘Plant analysis – an interpretation manual’. (Eds DJ Reuter, JB Robinson, Assistant Ed C Dutkiewicz) pp. 503–566. (CSIRO Publishing: Melbourne)

Chen LS, Cheng LL (2003) Both xanthophyll cycle-dependent thermal dissipation and the antioxidant system are up-regulated in grape (Vitis labrusca L. cv. Concord) leaves in response to N limitation. Journal of Experimental Botany 54, 2165–2175.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Chen YZ, Murchie EH, Hubbart S, Horton P, Peng SB (2003) Effects of season-dependent irradiance levels and nitrogen-deficiency on photosynthesis and photoinhibition in field-grown rice (Oryza sativa). Physiologia Plantarum 117, 343–351.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Cruz JL, Mosquim PR, Pelacani CR, Araujo WL, DaMatta FM (2003) Photosynthesis impairment in cassava leaves in response to nitrogen deficiency. Plant and Soil 257, 417–423.
Crossref | GoogleScholarGoogle Scholar | open url image1

Dang QL, Margolis HA, Coyea MR, Sy M, Collatz GJ (1997) Regulation of branch-level gas exchange of boreal trees: roles of shoot water potential and vapor pressure difference. Tree Physiology 17, 521–535.
PubMed |
open url image1

Demmig-Adams B, Adams WW (1996) The role of xanthophyll cycle carotenoids in the protection of photosynthesis. Trends in Plant Science 1, 21–26.
Crossref | GoogleScholarGoogle Scholar | open url image1

Demmig-Adams B, Adams WW (2006) Photoprotection in an ecological context: the remarkable complexity of thermal energy dissipation. The New Phytologist 172, 11–21.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Easter MJ, Spies TA (1994) Using hemispherical photography for estimating photosynthetic photon flux-density under canopies and in gaps in douglas-fir forests of the pacific-northwest. Canadian Journal of Forest Research-Revue Canadienne De Recherche Forestiere 24, 2050–2058.
Crossref | GoogleScholarGoogle Scholar | open url image1

Ehleringer JR (1981) Leaf absorptances of Mohave and Sonoran desert plants. Oecologia 49, 366–370.
Crossref | GoogleScholarGoogle Scholar | open url image1

Evans JR, Terashima I (1987) Effect of nitrogen nutrition on electron transport components and photosynthesis in spinach. Australian Journal of Plant Physiology 14, 59–68. open url image1

FAO–UNESCO (1978) ‘Soil map of the world. Volume X Australasia.’ (United Nations Educational: Paris)

Field C (1983) Allocating leaf nitrogen for the maximization of carbon gain – leaf age as a control on the allocation program. Oecologia 56, 341–347.
Crossref | GoogleScholarGoogle Scholar | open url image1

Fife DN, Nambiar EKS (1997) Changes in the canopy and growth of Pinus radiata in response to nitrogen supply. Forest Ecology and Management 93, 137–152.
Crossref | GoogleScholarGoogle Scholar | open url image1

Foyer C, Noctor G (2000) Oxygen processing in photosynthesis: regulation and signalling. The New Phytologist 146, 359–388.
Crossref | GoogleScholarGoogle Scholar | open url image1

Fryer MJ, Andrews JR, Oxborough K, Blowers DA, Baker NR (1998) Relationship between CO2 assimilation, photosynthetic electron transport, and active O2 metabolism in leaves of maize in the field during periods of low temperature. Plant Physiology 116, 571–580.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

García-Plazaola JI, Becerril JM (2000) Photoprotection mechanisms in European beech (Fagus sylvatica L.) seedlings from diverse climatic origins. Trees – Structure and Function 14, 339–343. open url image1

García-Plazaola JI, Becerril JM, Hernandez A, Niinemets U, Kollist H (2004) Acclimation of antioxidant pools to the light environment in a natural forest canopy. The New Phytologist 163, 87–97.
Crossref | GoogleScholarGoogle Scholar | open url image1

Hansen U, Fiedler B, Rank B (2002) Variation of pigment composition and antioxidative systems along the canopy light gradient in a mixed beech/oak forest: a comparative study on deciduous tree species differing in shade tolerance. Trees – Structure and Function 16, 354–364. open url image1

Hansen U, Schneiderheinze J, Stadelmann S, Rank B (2003) The alpha-tocopherol content of leaves of pedunculate oak (Quercus robur L.) – variation over the growing season and along the vertical light gradient in the canopy. Journal of Plant Physiology 160, 91–96.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Herbinger K, Then C, Low M, Haberer K, Alexous M , et al. (2005) Tree age dependence and within-canopy variation of leaf gas exchange and antioxidative defence in Fagus sylvatica under experimental free-air ozone exposure. Environmental Pollution 137, 476–482.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Kato MC, Hikosaka K, Hirotsu N, Makino A, Hirose T (2003) The excess light energy that is neither utilized in photosynthesis nor dissipated by photoprotective mechanisms determines the rate of photoinactivation in photosystem II. Plant & Cell Physiology 44, 318–325.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Kruse J, Adams MA (2008) Three parameters comprehensively describe the temperature response of respiratory oxygen reduction. Plant, Cell & Environment 31, 954–967.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Lambers H , Chapin FS III , Pons TL (1998 a) Leaf energy budgets: effects of radiation and temperature. In ‘Plant physiological ecology’. pp. 210–228. (Springer-Verlag: New York)

Lambers H , Chapin FS III , Pons TL (1998 b) Mineral nutrition. In ‘Plant physiological ecology’. pp. 239–292. (Springer-Verlag: New York)

Logan BA, Demmig-Adams B, Rosenstiel TH, Adams WW (1999) Effect of nitrogen limitation on foliar antioxidants in relationship to other metabolic characteristics. Planta 209, 213–220.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Logan BA, Adams WW, Demmig-Adams B (2007) Avoiding common pitfalls of chlorophyll fluorescence analysis under field conditions. Functional Plant Biology 34, 853–859.
Crossref | GoogleScholarGoogle Scholar | open url image1

Lundmark T, Bergh J, Strand M, Koppel A (1998) Seasonal variation of maximum photochemical efficiency in boreal Norway spruce stands. Trees – Structure and Function 13, 63–67. open url image1

Maxwell K, Johnson GN (2000) Chlorophyll fluorescence – a practical guide. Journal of Experimental Botany 51, 659–668.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Müller P, Xiao-Ping L, Niyogi KK (2001) Non-photochemical quenching. A response to excess light energy. Plant Physiology 125, 1558–1566.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Munne-Bosch S, Alegre L (2002) The function of tocopherols and tocotrienols in plants. Critical Reviews in Plant Sciences 21, 31–57. open url image1

Niinemets U, Ellsworth DS, Lukjanova A, Tobias M (2001) Site fertility and the morphological and photosynthetic acclimation of Pinus sylvestris needles to light. Tree Physiology 21, 1231–1244.
PubMed |
open url image1

Niinemets U, Lukjanova A, Turnbull MH, Sparrow AD (2007) Plasticity in mesophyll volume fraction modulates light-acclimation in needle photosynthesis in two pines. Tree Physiology 27, 1137–1151.
PubMed |
open url image1

Niyogi KK (2000) Safety valves for photosynthesis. Current Opinion in Plant Biology 3, 455–460.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Noctor G, Foyer CH (1998) Ascorbate and glutathione: keeping active oxygen under control. Annual Review of Plant Physiology and Plant Molecular Biology 49, 249–279.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Palmroth S, Hari P (2001) Evaluation of the importance of acclimation of needle structure, photosynthesis, and respiration to available photosynthetically active radiation in a Scots pine canopy. Canadian Journal of Forest Research-Revue Canadienne De Recherche Forestiere 31, 1235–1243.
Crossref | GoogleScholarGoogle Scholar | open url image1

Persson J, Gardeström P, Näsholm T (2006) Uptake, metabolism and distribution of organic and inorganic nitrogen sources by Pinus sylvestris. Journal of Experimental Botany 57, 2651–2659.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Poorter L, Oberbauer SF, Clark DB (1995) Leaf optical properties along a vertical gradient in a tropical rain forest canopy in Costa Rica. American Journal of Botany 82, 1257–1263.
Crossref | GoogleScholarGoogle Scholar | open url image1

Pórte A, Loustau D (1998) Variability of the photosynthetic characteristics of mature needles within the crown of a 25-year-old Pinus pinaster. Tree Physiology 18, 223–232.
PubMed |
open url image1

Posch S, Warren CR, Kruse J, Guttenberger H, Adams MA (2008) Nitrogen allocation and the fate of absorbed light in 21-year-old Pinus radiata. Tree Physiology 28, 375–384.
PubMed |
open url image1

Ramalho JC, Campos PS, Teixeira M, Nunes MA (1998) Nitrogen dependent changes in antioxidant system and in fatty acid composition of chloroplast membranes from Coffea arabica L. plants submitted to high irradiance. Plant Science 135, 115–124.
Crossref | GoogleScholarGoogle Scholar | open url image1

Richardson AD, Berlyn GP (2002) Changes in foliar spectral reflectance and chlorophyll fluorescence of four temperate species following branch cutting. Tree Physiology 22, 499–506.
PubMed |
open url image1

Robakowski P (2005) Species-specific acclimation to strong shade modifies susceptibility of conifers to photoinhibition. Acta Physiologiae Plantarum 27, 255–263.
Crossref | GoogleScholarGoogle Scholar | open url image1

Sands PJ (1995) Modelling Canopy Production. 1. Optimal distribution of photosynthetic resources. Australian Journal of Plant Physiology 22, 593–601. open url image1

Senger H, Wagner C, Hermsmeier D, Hohl N, Urbig T, Bishop NI (1993) The influence of light intensity and wavelength on the contents of α- and β-carotene and their xanthophylls in green algae. Journal of Photochemistry and Photobiology. B, Biology 18, 273–279.
Crossref | GoogleScholarGoogle Scholar | open url image1

Siefermann-Harms D (1994) Light and temperature control of season-dependent changes in the α- and β-carotene content of spruce needles. Journal of Plant Physiology 143, 488–494. open url image1

Smirnoff N (2000) The function and metabolism of ascorbic acid in plants. Current Opinion in Plant Biology 3, 229–235.
PubMed |
open url image1

Smirnoff N, Todd P, Stewart GR (1984) The occurrence of nitrate reduction in the leaves of woody plants. Annals of Botany 54, 363–374. open url image1

Tausz M (2001) The role of glutathione in plant reaction and adaptation to natural stresses. In ‘Significance of glutathione in plant adaptation to the environment’. (Eds D Grill, M Tausz, LJ DeKok) pp. 101–122. (Kluwer Publishers: Amsterdam)

Tausz M, Wonisch A, Grill D, Morales D, Jimenez MS (2003) Measuring antioxidants in tree species in the natural environment: from sampling to data evaluation. Journal of Experimental Botany 54, 1505–1510.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Tausz M, Loffler S, Posch S, Monschein S, Grill D, Katzel R (2005) Do photoprotective pigments and antioxidants in needles of Pinus sylvestris relate to high N or water availability at field plots in a dry year? Phyton-Annales Rei Botanicae 45, 107–116. open url image1

ter Steege H (1997) ‘Winphot: a Windows 3.1 programme to analyse vegetation indices, light and light quality from hemispherical photographs.’ (Tropenbos Guyana Programme: Tropenbos)

Van Kooten O, Snel JFH (1990) The use of chlorophyll fluorescence nomenclature in plant stress physiology. Photosynthesis Research 25, 147–150.
Crossref | GoogleScholarGoogle Scholar | open url image1

Verhoeven AS, Demmig-Adams B, Adams WW (1997) Enhanced employment of the xanthophyll cycle and thermal energy dissipation in spinach exposed to high light and N stress. Plant Physiology 113, 817–824.
PubMed |
open url image1

Von Caemmerer S (2000) Modelling C3 photosynthesis. In ‘Biochemical models of leaf photosynthesis’ pp. 29–70. (CSIRO Publishing: Melbourne)

Warren CR, Adams MA (2001) Distribution of N, Rubisco and photosynthesis in Pinus pinaster and acclimation to light. Plant, Cell & Environment 24, 597–609.
Crossref | GoogleScholarGoogle Scholar | open url image1

Warren CR, Dreyer E, Adams MA (2003a) Photosynthesis–Rubisco relationships in foliage of Pinus sylvestris in response to nitrogen supply and the proposed role of Rubisco and amino acids as nitrogen stores. Trees – Structure and Function 17, 359–366. open url image1

Warren CR, Ethier GJ, Livingston NJ, Grant NJ, Turpin DH, Harrison DL, Black TA (2003b) Transfer conductance in second growth Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) canopies. Plant, Cell & Environment 26, 1215–1227.
Crossref | GoogleScholarGoogle Scholar | open url image1

Wood GB (1971) Shape of Pinus radiata fascicles and the implications for estimating needle surface area. Australian Forest Research 5, 31–36. open url image1

Yamamoto HY , Bassi R (1996) Carotenoids: localization and function. In ‘Oxygenic photosynthesis: the light reactions’. (Eds DR Ort, CF Yocum) pp. 539–563. (Kluwer: Dordrecht)

Young AJ (1991) The photoprotective role of carotenoids in higher plants. Physiologia Plantarum 83, 702–708.
Crossref | GoogleScholarGoogle Scholar | open url image1