CSIRO Publishing blank image blank image blank image blank imageBooksblank image blank image blank image blank imageJournalsblank image blank image blank image blank imageAbout Usblank image blank image blank image blank imageShopping Cartblank image blank image blank image You are here: Journals > Functional Plant Biology   
Functional Plant Biology
Journal Banner
  Plant Function & Evolutionary Biology
 
blank image Search
 
blank image blank image
blank image
 
  Advanced Search
   

Journal Home
About the Journal
Editorial Board
Contacts
Content
Online Early
Current Issue
Just Accepted
All Issues
Special Issues
Research Fronts
Reviews
Evolutionary Reviews
Sample Issue
For Authors
General Information
Notice to Authors
Submit Article
Open Access
For Referees
Referee Guidelines
Review Article
For Subscribers
Subscription Prices
Customer Service
Print Publication Dates

blue arrow e-Alerts
blank image
Subscribe to our Email Alert or RSS feeds for the latest journal papers.

red arrow Connect with us
blank image
facebook twitter youtube

red arrow PrometheusWiki
blank image
PrometheusWiki
Protocols in ecological and environmental plant physiology

 

Article << Previous     |     Next >>   Contents Vol 38(5)

Partial rootzone drying improves almond tree leaf-level water use efficiency and afternoon water status compared with regulated deficit irrigation

Gregorio Egea A B F , Ian C. Dodd C , María M. González-Real A , Rafael Domingo D E and Alain Baille A

A Universidad Politécnica de Cartagena, Escuela Técnica Superior de Ingenieros Agrónomos, Área de Ingeniería Agroforestal, Paseo Alfonso XIII, 48, 30203, Cartagena, Spain.
B Soil Research Centre, Department of Geography and Environmental Science, University of Reading, Reading RG6 6DW, UK.
C The Lancaster Environment Centre, Lancaster University, LA1 4YQ, UK.
D Universidad Politécnica de Cartagena, Escuela Técnica Superior de Ingenieros Agrónomos, Departamento de Producción Vegetal, Paseo Alfonso XIII, 48. 30203. Cartagena, Spain.
E Unidad Asociada al CSIC de Horticultura Sostenible de Zonas Áridas (UPCT-CEBAS), Spain.
F Corresponding author. Email: g.egeacegarra@reading.ac.uk

Functional Plant Biology 38(5) 372-385 http://dx.doi.org/10.1071/FP10247
Submitted: 21 December 2010  Accepted: 11 March 2011   Published: 2 May 2011


 
PDF (959 KB) $25
 Export Citation
 Print
  
Abstract

To determine whether partial rootzone drying (PRD) optimised leaf gas exchange and soil–plant water relations in almond (Prunus dulcis (Mill.) D.A. Webb) compared with regulated deficit irrigation (RDI), a 2 year trial was conducted on field-grown trees in a semiarid climate. Five irrigation treatments were established: full irrigation (FI) where the trees were irrigated at 100% of the standard crop evapotranspiration (ETc); three PRD treatments (PRD70, PRD50 and PRD30) that applied 70, 50 and 30% ETc, respectively; and a commercially practiced RDI treatment that applied 50% ETc during the kernel-filling stage and 100% ETc during the remainder of the growth season. Measurements of volumetric soil moisture content in the soil profile (0–100 cm), predawn leaf water potential (Ψpd), midday stem water potential (Ψms), midday leaf gas exchange and trunk diameter fluctuations (TDF) were made during two growing seasons. The diurnal patterns of leaf gas exchange and stem water potential (Ψs) were appraised during the kernel-filling stage in all irrigation regimes. When tree water relations were assessed at solar noon, PRD did not show differences in either leaf gas exchange or tree water status compared with RDI. At similar average soil moisture status (adjudged by similar Ψpd), PRD50 trees had higher water status than RDI trees in the afternoon, as confirmed by Ψs and TDF. Although irrigation placement showed no effects on diurnal stomatal regulation, diurnal leaf net photosynthesis (Al) was substantially less limited in PRD50 than in RDI trees, indicating that PRD improved leaf-level water use efficiency.

Additional keywords:deficit irrigation, leaf gas exchange, Prunus dulcis, regulated deficit irrigation, soil moisture heterogeneity, stem water potential.


References

Abrisqueta JM, Mounzer O, Álvarez S, Conejero W, García-Orellana Y, Tapia LM, Vera J, Abrisqueta I, Ruiz-Sánchez MC (2008) Root dynamics of peach trees submitted to partial rootzone drying and continuous deficit irrigation. Agricultural Water Management 95, 959–967.
CrossRef |

Aganchich B, Wahbi S, Loreto F, Centritto M (2009) Partial root zone drying: regulation of photosynthesis limitations and antioxidant enxymatic activities in young olive (Olea europaea) saplings. Tree Physiology 29, 685–696.
CrossRef | CAS | PubMed |

Allen RG, Pereira LS, Raes D, Smith M (1998) Crop evapotranspiration. Guidelines for computing crop water requirements. Irrigation Drainage Paper No. 56. FAO, Rome.

Boyer JS, Chin-Wong S, Farquhar GD (1997) CO2 and water vapour exchange across leaf cuticle (epidermis) at various water potentials. Plant Physiology 114, 185–191.
| CAS | PubMed |

Buckley TN, Farquhar GD, Mott KA (1997) Qualitative effects of patchy stomatal conductance distribution features on gas-exchange calculations. Plant, Cell & Environment 20, 867–880.
CrossRef |

Chalmers DJ, Mitchell PD, Van Heek LAG (1981) Control of peach tree growth and productivity by regulated water supply, tree density, and summer pruning. Journal of the American Society for Horticultural Science 106, 307–312.

Chaves MM (1991) Effects of water deficits on carbon assimilation. Journal of Experimental Botany 42, 1–16.
CrossRef | CAS |

Collins MJ, Fuentes S, Barlow EWR (2010) Partial rootzone drying and deficit irrigation increase stomatal sensitivity to vapour pressure deficit in anisohydric grapevines. Functional Plant Biology 37, 128–138.
CrossRef |

Davies WJ, Zhang J (1991) Root signals and the regulation of growth and development of plants in drying soil. Annual Review of Plant Physiology 42, 55–76.
CrossRef | CAS |

De la Hera ML, Romero P, Gómez-Plaza E, Martínez A (2007) Is partial root-zone drying an effective irrigation technique to improve water use efficiency and fruit quality in field-grown wine grapes under semiarid conditions? Agricultural Water Management 87, 261–274.
CrossRef |

De Souza CR, Maroco JP, Dos Santos TP, Rodrigues ML, Lopes CM, Pereira JS, Chaves MM (2003) Partial rootzone drying: regulation of stomatal aperture and carbon assimilation in field-grown grapevines (Vitis vinifera cv. Moscatel). Functional Plant Biology 30, 653–662.
CrossRef | CAS |

De Souza CR, Maroco JP, Dos Santos TP, Rodrigues ML, Lopes C, Pereira JS, Chaves MM (2005) Control of stomatal aperture and carbon uptake by deficit irrigation in two grapevine cultivars. Agriculture Ecosystems & Environment 106, 261–274.
CrossRef | CAS |

Dodd IC (2005) Root-to-shoot signalling: assessing the roles of ‘up’ in the up and down world of long-distance signalling in planta. Plant and Soil 274, 251–270.
CrossRef | CAS |

Dodd IC (2007) Soil moisture heterogeneity during deficit irrigation alters root-to-shoot signalling of abscisic acid. Functional Plant Biology 34, 439–448.
CrossRef | CAS |

Dodd IC (2009) Rhizosphere manipulations to maximise ‘crop per drop’ during deficit irrigation. Journal of Experimental Botany 60, 2454–2459.
CrossRef | CAS | PubMed |

Dodd IC, Theobald JC, Bacon MA, Davies WJ (2006) Alternation of wet and dry sides during partial rootzone drying irrigation alters root-to-shoot signalling of abscisic acid. Functional Plant Biology 33, 1081–1089.
CrossRef | CAS |

Dodd IC, Egea G, Davies WJ (2008a) ABA signalling when soil moisture is heterogeneous: decreased photoperiod sap flow from drying roots limits ABA export to the shoots. Plant, Cell & Environment 31, 1263–1274.
CrossRef | CAS | PubMed |

Dodd IC, Egea G, Davies WJ (2008b) Accounting for sap flow from different parts of the root system improves the prediction of xylem ABA concentration in plants grown with heterogeneous soil moisture. Journal of Experimental Botany 59, 4083–4093.
CrossRef | CAS | PubMed |

Dodd IC, Egea G, Watts CW, Whalley WR (2010) Root water potential integrates discrete soil physical properties to influence ABA signalling during partial rootzone drying. Journal of Experimental Botany 61, 3543–3551.
CrossRef | CAS | PubMed |

Domingo R, Ruiz-Sánchez MC, Sánchez-Blanco MJ, Torrecillas A (1996) Water relations, growth and yield of Fino lemon trees under regulated deficit irrigation. Irrigation Science 16, 115–123.
CrossRef |

Dos Santos TP, Lopes CM, Rodrigues ML, De Souza CR, Ricardo-da-Silva JM, Maroco JP, Pereira JS, Chaves MM (2007) Effects of deficit irrigation strategies on cluster microclimate for improving fruit composition of Moscatel field-grown grapevines. Scientia Horticulturae 112, 321–330.
CrossRef |

Dry PR, Loveys BR, Botting D, During H (1996) Effects of partial rootzone drying on grapevine vigour, yield, composition of fruit and use of water. In ‘Proceedings of the 9th Australian Wine Industry Technical Conference’. (Eds CS Stockley, AN Sas, RS Johnstone, TH Lee) pp. 126–131. (Winetitles: Adelaide, SA)

Dry PR, Loveys BR, Düring H (2000) Partial drying of the rootzone of grape. I. Transient changes in shoot growth and gas exchange. Vitis 39, 3–7.

Egea G, González-Real MM, Baille A, Nortes PA, Sánchez-Bel P, Domingo R (2009a) The effects of contrasted deficit irrigation strategies on the fruit growth and kernel quality of mature almond trees. Agricultural Water Management 96, 1605–1614.
CrossRef |

Egea G, Pagán E, Baille A, Domingo R, Nortes PA, Pérez-Pastor A (2009b) Usefulness of establishing trunk diameter based reference lines for irrigation scheduling in almond trees. Irrigation Science 27, 431–441.
CrossRef |

Egea G, Nortes PA, González-Real MM, Baille A, Domingo R (2010) Agronomic response and water productivity of almond trees under contrasted deficit irrigation regimes. Agricultural Water Management 97, 171–181.
CrossRef |

Egea G, González-Real MM, Baille A, Nortes PA, Díaz-Espejo A (2011) Disentangling the contributions of ontogeny and water stress to photosynthetic limitations in almond trees. Plant, Cell & Environment
CrossRef | PubMed |

Fereres E, Soriano MA (2007) Deficit irrigation for reducing agricultural water use. Journal of Experimental Botany 58, 147–159.
CrossRef | CAS | PubMed |

Flexas J, Baron M, Bota J, Ducruet JM, Galle A, Galmes J, Jimenez M, Pou A, Ribas-Carbo M, Sajnani C, Tomas M, Medrano H (2009) Photosynthesis limitations during water stress acclimation and recovery in the drought-adapted Vitis hybrid Richter-110 (Vitis berlandieri × Vitis rupestris). Journal of Experimental Botany 60, 2361–2377.
CrossRef | CAS | PubMed |

Galmés J, Medrano H, Flexas J (2007) Photosynthetic limitations in response to water stress and recovery in Mediterranean plants with different growth forms. New Phytologist 175, 81–93.
CrossRef | PubMed |

Girona J, Mata M, Marsal J (2005) Regulated deficit irrigation during the kernel-filling period and optimal irrigation rates in almond. Agricultural Water Management 75, 152–167.
CrossRef |

Goldhamer DA, Smith TE (1995) Single-season drought irrigation strategies influence almond production. California Agriculture 49, 19–22.
CrossRef |

Goldhamer DA, Viveros M (2000) Effects of preharvest irrigation cutoff durations and postharvest water deprivation on almond tree performance. Irrigation Science 19, 125–131.
CrossRef |

Goldhamer DA, Salinas M, Crisosto C, Day KR, Soler M, Moriana A (2002) Effects of regulated deficit irrigation and partial root zone drying on late harvest peach tree performance. Acta Horticulturae 592, 343–350.

Granier A (1987) Evaluation of transpiration in a douglas fir stand by means of sap flow measurements. Tree Physiology 3, 309–319.
| PubMed |

Gu SL, Du GQ, Zoldoske D, Hakim A, Cochran R, Fuselgang K, Jorgensen G (2004) Effects of irrigation amount on water relations, vegetative growth, yield and fruit composition of Sauvignon Blanc grapevines under partial rootzone drying and conventional irrigation in the San Joaquin Valley of California, USA. Journal of Horticultural Science & Biotechnology 79, 26–33.

Heilmeier H, Wartinger A, Erhard M, Zimmermann R, Horn R, Schulze ED (2002) Soil drought increases leaf and whole-plant water use of Prunus dulcis grown in the Negev Desert. Oecologia 130, 329–336.
CrossRef |

Hsiao TC (1990) Measurements of plant water status. In ‘Irrigation of agricultural crops. Agronomy Monograph No 30’. (Eds BA Steward, DR Nielsen) pp. 243–279. (American Society of Agronomy: Madison, WI)

Intrigliolo DS, Castel JR (2009) Response of Vitis vinifera cv. ‘Tempranillo’ to partial rootzone drying in the field: water relations, growth, yield and fruit and wine quality. Agricultural Water Management 96, 282–292.
CrossRef |

IPCC (2007) Intergovernmental panel on climate change. Fourth Assessment Report (AR4) released in 2007. Available at http://www.ipcc.ch/ [Verified 1 April 2011]

Kang S, Hu X, Jerie P, Zhang J (2003) The effects of partial rootzone drying on root, trunk sap flow and water balance in an irrigated pear (Pyrus communis L.) orchard. Journal of Hydrology 280, 192–206.
CrossRef |

Leib BG, Caspari HW, Redulla CA, Andrews PK, Jabro JJ (2006) Partial rootzone drying and deficit irrigation of ‘Fuji’ apples in a semiarid climate. Irrigation Science 24, 85–99.
CrossRef |

Liu FL, Shahnazari A, Andersen MN, Jacobsen SE, Jensen CR (2006) Physiological responses of potato (Solanum tuberosum L.) to partial root-zone drying: ABA signalling, leaf gas exchange, and water use efficiency. Journal of Experimental Botany 57, 3727–3735.
CrossRef | CAS | PubMed |

Loveys BR, Stoll M, Dry P, McCarthy M (1998) Partial rootzone drying stimulate stress responses in grapevine to improve water use efficiency while maintaining crop yield and quality. The Australian Grapegrower & Winemaker: Journal of the Australian Wine Industry 414, 108–114.

Lovisolo C, Hartung W, Schubert A (2002) Whole-plant hydraulic conductance and root-to-shoot flow of abscisic acid are independently affected by water stress in grapevines. Functional Plant Biology 29, 1349–1356.
CrossRef | CAS |

Mingo DM, Theobald JC, Bacon MA, Davies WJ, Dodd IC (2004) Biomass allocation in tomato (Lycopersicon esculentum) plants grown under partial rootzone drying: enhancement of root growth. Functional Plant Biology 31, 971–978.
CrossRef |

Nortes PA, González-Real MM, Egea G, Baille A (2009) Seasonal effects of deficit irrigation on leaf photosynthetic traits of fruiting and non-fruiting shoots in almond trees. Tree Physiology 29, 375–388.
CrossRef | CAS | PubMed |

Romero P, Botía P, García F (2004) Effects of regulated deficit irrigation under subsurface drip irrigation conditions on vegetative development and yield of mature almond trees. Plant and Soil 260, 169–181.
CrossRef | CAS |

Sadras VO (2009) Does partial root-zone drying improve irrigation water productivity in the field? A meta-analysis. Irrigation Science 27, 183–190.
CrossRef |

Saeed H, Grove IG, Kettlewell PS, Hall NW (2008) Potential of partial rootzone drying as an alternative irrigation technique for potatoes (Solanum tuberosum). Annals of Applied Biology 152, 71–80.
CrossRef |

Steinberg SL, McFarland MJ, Miller JC (1989) Effect of water stress on stomatal conductance and leaf water relations of leaves along current-year branches of peach. Australian Journal of Plant Physiology 16, 549–560.
CrossRef |

Stoll M, Loveys BR, Dry PR (2000) Hormonal changes induced by partial rootzone drying of irrigated grapevine. Journal of Experimental Botany 51, 1627–1634.
CrossRef | CAS | PubMed |

Tardieu F, Simonneau T (1998) Variability among species of stomatal control under fluctuating soil water status and evaporative demand: modelling isohydric and anisohydric behaviours. Journal of Experimental Botany 49, 419–432.
CrossRef |

Vogt KU (2001) Hydraulic vulnerability, vessel refilling, and seasonal courses of stem water potential of Sorbus aucuparia L. & Sambucus nigra L. Journal of Experimental Botany 52, 1527–1536.
CrossRef | CAS | PubMed |

Wahbi S, Wakrim R, Aganchich B, Tahi H, Serraj R (2005) Effects of partial rootzone drying (PRD) on adult olive tree (Olea europaea) in field conditions under arid climate. I. Physiological and agronomic responses. Agriculture Ecosystems & Environment 106, 289–301.
CrossRef |

Wartinger A, Heilmeier H, Hartung W (1990) Daily and seasonal courses of leaf conductance and abscisic acid in the xylem sap of almond trees (Prunus dulcis (Miller) D.A.Webb) under desert conditions. New Phytologist 116, 581–587.
CrossRef | CAS |


   
Subscriber Login
Username:
Password:  

 
    
Legal & Privacy | Contact Us | Help

CSIRO

© CSIRO 1996-2014