CSIRO Publishing blank image blank image blank image blank imageBooksblank image blank image blank image blank imageJournalsblank image blank image blank image blank imageAbout Usblank image blank image blank image blank imageShopping Cartblank image blank image blank image You are here: Journals > Functional Plant Biology   
Functional Plant Biology
Journal Banner
  Plant Function & Evolutionary Biology
blank image Search
blank image blank image
blank image
  Advanced Search

Journal Home
About the Journal
Editorial Board
Online Early
Current Issue
Just Accepted
All Issues
Special Issues
Research Fronts
Evolutionary Reviews
Sample Issue
For Authors
General Information
Notice to Authors
Submit Article
Open Access
For Referees
Referee Guidelines
Review Article
For Subscribers
Subscription Prices
Customer Service
Print Publication Dates

blue arrow e-Alerts
blank image
Subscribe to our Email Alert or RSS feeds for the latest journal papers.

red arrow Connect with us
blank image
facebook twitter youtube

red arrow PrometheusWiki
blank image
Protocols in ecological and environmental plant physiology


Article << Previous     |     Next >>   Contents Vol 36(4)

A PRp27 gene of Nicotiana benthamiana contributes to resistance to Pseudomonas syringae pv. tabaci but not to Colletotrichum destructivum or Colletotrichum orbiculare

Weilong Xie A, Paul H. Goodwin A B

A Department of Environmental Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada.
B Corresponding author. Email: pgoodwin@uoguelph.ca
PDF (715 KB) $25
 Supplementary Material
 Export Citation


NbPRp27 from Nicotiana benthamiana Domin. is highly similar to NtPRp27, which is a secreted protein from Nicotiana tabacum L. belonging to pathogen-inducible genes comprising the PR17 family of pathogenesis-related proteins. A collection of related genes from plants in several plant families showed that their deduced amino acid sequences clustered according to plant family. Expression of NbPRp27 was not detectable in healthy leaves or stems but was expressed at high levels in roots. Expression was induced by wounding, BTH, ethylene, methyl jasmonate, ABA and NAA, but not by drought, heat or cold stress. Expression was induced by infection with the hemibiotrophic pathogens, Colletotrichum destructivum, Colletotrichum orbiculare and Pseudomonas syringae pv. tabaci. For infections with the Colletotrichum species, expression increased more slowly during biotrophy than necrotrophy, but the reverse was true for P. syringae pv. tabaci. Virus-induced silencing of NbPRp27 did not affect the lesion number produced by the Colletotrichum species but did reduce basal resistance to P. syringae pv. tabaci permitting higher bacterial populations. Based on sequence similarities, PRp27 proteins have been hypothesised to have protease activity and may contribute to resistance by exhibiting direct antimicrobial activity in the apoplast, releasing of antimicrobial compounds from the plant matrix or releasing elicitors from pathogens to induce resistance.

Keywords: anthracnose, bacterial wildfire, biotrophy, necrotrophy, pathogenesis-related protein.

Subscriber Login

Legal & Privacy | Contact Us | Help


© CSIRO 1996-2014