Register      Login
Functional Plant Biology Functional Plant Biology Society
Plant function and evolutionary biology

Articles citing this paper

Medicago truncatula as a model for understanding plant interactions with other organisms, plant development and stress biology: past, present and future

Ray J. Rose A
+ Author Affiliations
- Author Affiliations

A Australian Research Council Centre of Excellence for Integrative Legume Research, School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW 2308, Australia. Email: ray.rose@newcastle.edu.au

Functional Plant Biology 35(4) 253-264 https://doi.org/10.1071/FP07297
Submitted: 17 December 2007  Accepted: 16 April 2008   Published: 3 June 2008



64 articles found in Crossref database.

Natural diversity in the model legumeMedicago truncatulaallows identifying distinct genetic mechanisms conferring partial resistance toVerticilliumwilt
Ben Cécile, Toueni Maoulida, Montanari Sara, Tardin Marie-Claire, Fervel Magalie, Negahi Azam, Saint-Pierre Laure, Mathieu Guillaume, Gras Marie-Christine, Noël Dominique, Prospéri Jean-Marie, Pilet-Nayel Marie-Laure, Baranger Alain, Huguet Thierry, Julier Bernadette, Rickauer Martina, Gentzbittel Laurent
Journal of Experimental Botany. 2013 64(1). p.317
Inoculation with Efficient Nitrogen Fixing and Indoleacetic Acid Producing Bacterial Microsymbiont Enhance Tolerance of the Model LegumeMedicago truncatulato Iron Deficiency
Kallala Nadia, M’sehli Wissal, Jelali Karima, Kais Zribi, Mhadhbi Haythem
BioMed Research International. 2018 2018 p.1
Legume Genomics (2013)
Song Youhong, Nolan Kim E., Rose Ray J.
Transcriptional regulation of early embryo development in the model legume Medicago truncatula
Kurdyukov Sergey, Song Youhong, Sheahan Michael B., Rose Ray J.
Plant Cell Reports. 2014 33(2). p.349
Medicago truncatula Oleanolic-Derived Saponins Are Correlated with Caterpillar Deterrence
Cai Fanping, Watson Bonnie S., Meek David, Huhman David V., Wherritt Daniel J., Ben Cecile, Gentzbittel Laurent, Driscoll Brian T., Sumner Lloyd W., Bede Jacqueline C.
Journal of Chemical Ecology. 2017 43(7). p.712
Is there genetic variation in mycorrhization ofMedicago truncatula?
Dreher Dorothée, Yadav Heena, Zander Sindy, Hause Bettina
PeerJ. 2017 5 p.e3713
Antioxidant gene–enzyme responses in Medicago truncatula genotypes with different degree of sensitivity to salinity
Mhadhbi Haythem, Fotopoulos Vasileios, Mylona Photini V., Jebara Moez, Elarbi Aouani Mohamed, Polidoros Alexios N.
Physiologia Plantarum. 2011 141(3). p.201
Response of Medicago truncatula Seedlings to Colonization by Salmonella enterica and Escherichia coli O157:H7
Jayaraman Dhileepkumar, Valdés-López Oswaldo, Kaspar Charles W., Ané Jean-Michel, Börnke Frederik
PLoS ONE. 2014 9(2). p.e87970
An autonomous plant growing miniaturized incubator for a Cubesat
Trouillefou Christophe Marcel, Law-Kam Cio Yann-Seing, Jolicoeur Mario, Said Bilel, Galarneau Anne, Achiche Sofiane, Beltrame Giovanni
Acta Astronautica. 2021 179 p.439
Natural product biosynthesis in Medicago species
Gholami Azra, De Geyter Nathan, Pollier Jacob, Goormachtig Sofie, Goossens Alain
Natural Product Reports. 2014 31(3). p.356
Plant Biotechnology: Progress in Genomic Era (2019)
Bandyopadhyay Kaustav, Verdier Jerome, Kang Yun
Do jasmonates play a role in arbuscular mycorrhiza-induced local bioprotection of Medicago truncatula against root rot disease caused by Aphanomyces euteiches?
Hilou Adama, Zhang Haoqiang, Franken Philipp, Hause Bettina
Mycorrhiza. 2014 24(1). p.45
Alternative oxidase 1 (Aox1) gene expression in roots of Medicago truncatula is a genotype-specific component of salt stress tolerance
Mhadhbi Haythem, Fotopoulos Vasileios, Mylona Photini V., Jebara Moez, Aouani Mohamed Elarbi, Polidoros Alexios N.
Journal of Plant Physiology. 2013 170(1). p.111
Association of highly and weakly mycorrhizal seedlings can promote the extra- and intraradical development of a common mycorrhizal network
Derelle Damien, Declerck Stéphane, Genet Patricia, Dajoz Isabelle, van Aarle Ingrid M.
FEMS Microbiology Ecology. 2012 79(1). p.251
Nod factor perception protein carries weight in biotic interactions
Gough Clare, Jacquet Christophe
Trends in Plant Science. 2013 18(10). p.566
Sinorhizobium medicae WSM419 Genes That Improve Symbiosis between Sinorhizobium meliloti Rm1021 and Medicago truncatula Jemalong A17 and in Other Symbiosis Systems
Ghosh Prithwi, Adolphsen Katie N., Yurgel Svetlana N., Kahn Michael L., Stabb Eric V.
Applied and Environmental Microbiology. 2021 87(15).
A complex genetic network involving a broad-spectrum locus and strain-specific loci controls resistance to different pathotypes of Aphanomyces euteiches in Medicago truncatula
Hamon Céline, Baranger Alain, Miteul Henri, Lecointe Ronan, Le Goff Isabelle, Deniot Gwenaëlle, Onfroy Caroline, Moussart Anne, Prosperi Jean-Marie, Tivoli Bernard, Delourme Régine, Pilet-Nayel Marie-Laure
Theoretical and Applied Genetics. 2010 120(5). p.955
Nodule Senescence in Medicago truncatula–Sinorhizobium Symbiosis Under Abiotic Constraints: Biochemical and Structural Processes Involved in Maintaining Nitrogen-Fixing Capacity
Mhadhbi Haythem, Djébali Naceur, Chihaoui Saifallh, Jebara Moez, Mhamdi Ridha
Journal of Plant Growth Regulation. 2011 30(4). p.480
Medicago truncatula Gaertn. as a model for understanding the mechanism of growth promotion by bacteria from rhizosphere and nodules of alfalfa
Kisiel Anna, Kępczyńska Ewa
Planta. 2016 243(5). p.1169
Metabolic signatures of germination triggered by kinetin in Medicago truncatula
Araújo Susana, Pagano Andrea, Dondi Daniele, Lazzaroni Simone, Pinela Eduardo, Macovei Anca, Balestrazzi Alma
Scientific Reports. 2019 9(1).
Laser Microdissection Unravels Cell-Type-Specific Transcription in Arbuscular Mycorrhizal Roots, Including CAAT-Box Transcription Factor Gene Expression Correlating with Fungal Contact and Spread  
Hogekamp Claudia, Arndt Damaris, Pereira Patrícia A., Becker Jörg D., Hohnjec Natalija, Küster Helge
Plant Physiology. 2011 157(4). p.2023
Composite Medicago truncatula plants harbouring Agrobacterium rhizogenes-transformed roots reveal normal mycorrhization by Glomus intraradices
Mrosk Cornelia, Forner Susanne, Hause Gerd, Küster Helge, Kopka Joachim, Hause Bettina
Journal of Experimental Botany. 2009 60(13). p.3797
Agroecological impact of an in vitro biotechnology approach of embryo development and seed filling in legumes
Ochatt Sergio J.
Agronomy for Sustainable Development. 2015 35(2). p.535
Genetic variation for root architecture, nutrient uptake and mycorrhizal colonisation in Medicago truncatula accessions
Schultz Carolyn J., Kochian Leon V., Harrison Maria J.
Plant and Soil. 2010 336(1-2). p.113
Legume Nitrogen Fixation in Soils with Low Phosphorus Availability (2017)
Sulieman Saad, Tran Lam-Son Phan
Abiotic Stress Responses in Legumes: Strategies Used to Cope with Environmental Challenges
Araújo Susana S., Beebe Steve, Crespi Martin, Delbreil Bruno, González Esther M., Gruber Veronique, Lejeune-Henaut Isabelle, Link Wolfgang, Monteros Maria J., Prats Elena, Rao Idupulapati, Vadez Vincent, Patto Maria C. Vaz
Critical Reviews in Plant Sciences. 2015 34(1-3). p.237
Quantitative Resistance to Verticillium Wilt in Medicago truncatula Involves Eradication of the Fungus from Roots and Is Associated with Transcriptional Responses Related to Innate Immunity
Toueni Maoulida, Ben Cécile, Le Ru Aurélie, Gentzbittel Laurent, Rickauer Martina
Frontiers in Plant Science. 2016 7
Genetic variability and identification of quantitative trait loci affecting plant growth and chlorophyll fluorescence parameters in the model legume Medicago truncatula under control and salt stress conditions
Exbrayat Sarah, Bertoni Georges, Naghavie Mohamad Reza, Peyghambari Ali, Badri Mounavar, Debelle Frédéric
Functional Plant Biology. 2014 41(9). p.983
Heat Stress in Legume Seed Setting: Effects, Causes, and Future Prospects
Liu Yonghua, Li Jiajia, Zhu Yulei, Jones Ashley, Rose Ray J., Song Youhong
Frontiers in Plant Science. 2019 10
Oil body biogenesis and biotechnology in legume seeds
Song Youhong, Wang Xin-Ding, Rose Ray J.
Plant Cell Reports. 2017 36(10). p.1519
Development of real-time PCR assay for detection and quantification ofSinorhizobium melilotiin soil and plant tissue
Trabelsi D., Pini F., Aouani M.E., Bazzicalupo M., Mengoni A.
Letters in Applied Microbiology. 2009 48(3). p.355
Morphological and genetic changes induced by excess Zn in roots of Medicago truncatula A17 and a Zn accumulating mutant
Lewis Ricky W, Tang Guiliang, McNear David H
BMC Research Notes. 2012 5(1).
Phoma medicaginis colonizes Medicago truncatula root nodules and affects nitrogen fixation capacity
Chihaoui Saif-Allah, Djébali Naceur, Mrabet Moncef, Barhoumi Fathi, Mhamdi Ridha, Mhadhbi Haythem
European Journal of Plant Pathology. 2015 141(2). p.375
Regulation of Carbon Partitioning in the Seed of the Model Legume Medicago truncatula and Medicago orbicularis: A Comparative Approach
Song Youhong, He Liang, Wang Xin-Ding, Smith Nathan, Wheeler Simon, Garg Manohar L., Rose Ray J.
Frontiers in Plant Science. 2017 8
From embryo sac to oil and protein bodies: embryo development in the model legume Medicago truncatula
Wang Xin‐Ding, Song Youhong, Sheahan Michael B., Garg Manohar L., Rose Ray J.
New Phytologist. 2012 193(2). p.327
Expression of a rice GLP in Medicago truncatula exerting pleiotropic effects on resistance against Fusarium oxysporum through enhancing FeSOD-like activity
Sultana Tasawar, Deeba Farah, Naz Farah, Rose Ray J., Saqlan Naqvi S. M.
Acta Physiologiae Plantarum. 2016 38(11).
Seed oil storage in three contrasted legume species: implications for oil improvement
Shang Xiaoguang, Zhu Yulei, Chen Xiang, Wang Xin-Ding, Rose Ray J., Song Youhong
Acta Physiologiae Plantarum. 2020 42(8).
Asparagine as a major factor in the N-feedback regulation of N2 fixation in Medicago truncatula
Sulieman Saad, Fischinger Stephanie A., Gresshoff Peter M., Schulze Joachim
Physiologia Plantarum. 2010 140(1). p.21
Genes Associated with Biological Nitrogen Fixation Efficiency Identified Using RNA Sequencing in Red Clover (Trifolium pratense L.)
Vlk David, Trněný Oldřich, Řepková Jana
Life. 2022 12(12). p.1975
Specific Host-Responsive Associations Between Medicago truncatula Accessions and Sinorhizobium Strains
Kazmierczak Théophile, Nagymihály Marianna, Lamouche Florian, Barrière Quentin, Guefrachi Ibtissem, Alunni Benoit, Ouadghiri Mouna, Ibijbijen Jamal, Kondorosi Éva, Mergaert Peter, Gruber Véronique
Molecular Plant-Microbe Interactions®. 2017 30(5). p.399
Optimizing Protocols for Arabidopsis Shoot and Root Protoplast Cultivation
Pasternak Taras, Paponov Ivan A., Kondratenko Serhii
Plants. 2021 10(2). p.375
Silicon enrichment alters functional traits in legumes depending on plant genotype and symbiosis with nitrogen‐fixing bacteria
Putra Rocky, Vandegeer Rebecca K., Karan Shawan, Powell Jeff R., Hartley Susan E., Johnson Scott N.
Functional Ecology. 2021 35(12). p.2856
Gene expression analysis of molecular mechanisms of defense induced in Medicago truncatula parasitized by Orobanche crenata
Die José Vicente, González Verdejo Clara I., Dita Miguel Á., Nadal Salvador, Román Belén
Plant Physiology and Biochemistry. 2009 47(7). p.635
Characterization of Transcription Factors Following Expression Profiling of Medicago truncatula–Botrytis spp. Interactions
Villegas-Fernández Ángel M., Krajinski Franziska, Schlereth Armin, Madrid Eva, Rubiales Diego
Plant Molecular Biology Reporter. 2014 32(5). p.1030
The argon-induced decline in nitrogenase activity commences before the beginning of a decline in nodule oxygen uptake
Fischinger Stephanie A., Schulze Joachim
Journal of Plant Physiology. 2010 167(13). p.1112
Genome-Wide Association Mapping of Loci Associated with Plant Growth and Forage Production under Salt Stress in Alfalfa (Medicago sativa L.)
Liu Xiang-Ping, Yu Long-Xi
Frontiers in Plant Science. 2017 8
Somatic Embryogenesis in the Medicago truncatula Model: Cellular and Molecular Mechanisms
Rose Ray J.
Frontiers in Plant Science. 2019 10
Water deficit and recovery response of Medicago truncatula plants expressing the ELIP-like DSP22
Araújo S. S., Duque A. S., Silva J. M., Santos D., Silva A. B., Fevereiro P.
Biologia plantarum. 2013 57(1). p.159
The association of homeobox gene expression with stem cell formation and morphogenesis in cultured Medicago truncatula
Chen S.-K., Kurdyukov S., Kereszt A., Wang X.-D., Gresshoff P. M., Rose R. J.
Planta. 2009 230(4). p.827
Double genetically modified symbiotic system for improved Cu phytostabilization in legume roots
Pérez-Palacios Patricia, Romero-Aguilar Asunción, Delgadillo Julián, Doukkali Bouchra, Caviedes Miguel A., Rodríguez-Llorente Ignacio D., Pajuelo Eloísa
Environmental Science and Pollution Research. 2017 24(17). p.14910
Nitrogen use efficiency. 3. Nitrogen fixation: genes and costs
Andrews M., Lea P.J., Raven J.A., Azevedo R.A.
Annals of Applied Biology. 2009 155(1). p.1
Detection of partial resistance quantitative trait loci against Didymella pinodes in Medicago truncatula
Madrid E., Barilli E., Gil J., Huguet T., Gentzbittel L., Rubiales D.
Molecular Breeding. 2014 33(3). p.589
Seed Longevity in Legumes: Deeper Insights Into Mechanisms and Molecular Perspectives
Ramtekey Vinita, Cherukuri Susmita, Kumar Sunil, V. Sripathy Kudekallu, Sheoran Seema, K. Udaya Bhaskar, K. Bhojaraja Naik, Kumar Sanjay, Singh Arvind Nath, Singh Harsh Vardhan
Frontiers in Plant Science. 2022 13
Retroelement insertions at the Medicago FTa1 locus in spring mutants eliminate vernalisation but not long‐day requirements for early flowering
Jaudal Mauren, Yeoh Chin C., Zhang Lulu, Stockum Christine, Mysore Kirankumar S., Ratet Pascal, Putterill Joanna
The Plant Journal. 2013 76(4). p.580
Model legumes contribute to faba bean breeding
Rispail Nicolas, Kaló Péter, Kiss György B., Ellis T.H. Noel, Gallardo Karine, Thompson Richard D., Prats Elena, Larrainzar Estibaliz, Ladrera Ruben, González Esther M., Arrese-Igor Cesar, Ferguson Brett J., Gresshoff Peter M., Rubiales Diego
Field Crops Research. 2010 115(3). p.253
Plant Defense Responses in Medicago truncatula Unveiled by Microarray Analysis
Curto Miguel, Krajinski Franziska, Küster Helge, Rubiales Diego
Plant Molecular Biology Reporter. 2015 33(3). p.569
Development of methods to overcome physiological seed dormancy of temperate annual pasture legumes to assist speed breeding
Peck David M., Humphries Alan W., Ballard Ross A., Cullen Brendan
Crop & Pasture Science. 2023 74(8). p.797
FT genes and regulation of flowering in the legume Medicago truncatula
Putterill Joanna, Zhang Lulu, Yeoh Chin Chin, Balcerowicz Martin, Jaudal Mauren, Gasic Erika Varkonyi
Functional Plant Biology. 2013 40(12). p.1199
Functional Genomics in Medicago truncatula (2018)
Liu Chenggang, Ha Chan Man, Dixon Richard A.
Early nodulin 93 protein gene: essential for induction of somatic embryogenesis in oil palm
Chan Pek-Lan, Rose Ray J., Abdul Murad Abdul Munir, Zainal Zamri, Ong Pei-Wen, Ooi Leslie Cheng-Li, Low Eng-Ti Leslie, Ishak Zamzuri, Yahya Suzaini, Song Youhong, Singh Rajinder
Plant Cell Reports. 2020 39(11). p.1395
Behaviours of Medicago truncatula–Sinorhizobium meliloti Symbioses Under Osmotic Stress in Relation with the Symbiotic Partner Input: Effects on Nodule Functioning and Protection
Mhadhbi H., Fotopoulos V., Djebali N., Polidoros A. N., Aouani M. E.
Journal of Agronomy and Crop Science. 2009 195(3). p.225
Overexpression ofMedicago SVPgenes causes floral defects and delayed flowering inArabidopsisbut only affects floral development inMedicago
Jaudal Mauren, Monash Jacob, Zhang Lulu, Wen Jiangqi, Mysore Kirankumar S., Macknight Richard, Putterill Joanna
Journal of Experimental Botany. 2014 65(2). p.429
The Model Legume Medicago truncatula (2020)
von Wettberg Eric J.B., Ray‐Mukherjee Jayanti, Moriuchi Ken, Porter Stephanie S.
The Model Legume Medicago truncatula (2020)
Mhadhbi Haythem

Committee on Publication Ethics

Abstract Full Text PDF (234 KB) Export Citation Get Permission

Share

Share on Facebook Share on Twitter Share on LinkedIn Share via Email