Register      Login
Functional Plant Biology Functional Plant Biology Society
Plant function and evolutionary biology

Articles citing this paper

Is mesophyll conductance to CO2 in leaves of three Eucalyptus species sensitive to short-term changes of irradiance under ambient as well as low O2?

Cyril Douthe A B C , Erwin Dreyer A B D , Oliver Brendel A B and Charles R. Warren C
+ Author Affiliations
- Author Affiliations

A INRA, Unité Mixte de Recherches 1147 ‘Ecologie et Ecophysiologie Forestières’, F 54280 Champenoux, France.

B Université de Lorraine, Unité Mixte de Recherches 1147 ‘Ecologie et Ecophysiologie Forestières’, Faculté des Sciences, F 54500 Vandoeuvre, France.

C University of Sydney, School of Biological Sciences, Heydon-Laurence Building, A08, The University of Sydney, NSW 2006, Australia.

D Corresponding author. Email: dreyer@nancy.inra.fr

Functional Plant Biology 39(5) 435-448 https://doi.org/10.1071/FP11190
Submitted: 25 August 2011  Accepted: 26 March 2012   Published: 11 May 2012



46 articles found in Crossref database.

Mesophyll conductance: the leaf corridors for photosynthesis
Gago Jorge, Daloso Danilo M., Carriquí Marc, Nadal Miquel, Morales Melanie, Araújo Wagner L., Nunes-Nesi Adriano, Flexas Jaume
Biochemical Society Transactions. 2020 48(2). p.429
Variation in mesophyll conductance among Australian wheat genotypes
Jahan Eisrat, Amthor Jeffrey S., Farquhar Graham D., Trethowan Richard, Barbour Margaret M.
Functional Plant Biology. 2014 41(6). p.568
Methods of mesophyll conductance estimation: its impact on key biochemical parameters and photosynthetic limitations in phosphorus‐stressed soybean across CO2
Singh Shardendu K., Reddy Vangimalla R.
Physiologia Plantarum. 2016 157(2). p.234
Estimation of intrinsic water-use efficiency from δ13C signature of C3 leaves: Assumptions and uncertainty
Ma Wei Ting, Yu Yong Zhi, Wang Xuming, Gong Xiao Ying
Frontiers in Plant Science. 2023 13
Changes in the chloroplastic CO2 concentration explain much of the observed Kok effect: a model
Farquhar Graham D., Busch Florian A.
New Phytologist. 2017 214(2). p.570
The photosynthesis game is in the "inter-play": Mechanisms underlying CO2 diffusion in leaves
Gago J., Daloso D.M., Carriquí M., Nadal M., Morales M., Araújo W.L., Nunes-Nesi A., Perera-Castro A.V., Clemente-Moreno M.J., Flexas J.
Environmental and Experimental Botany. 2020 178 p.104174
Asymmetrical effects of mesophyll conductance on fundamental photosynthetic parameters and their relationships estimated from leaf gas exchange measurements
SUN YING, GU LIANHONG, DICKINSON ROBERT E., PALLARDY STEPHEN G., BAKER JOHN, CAO YONGHUI, DAMATTA FÁBIO MURILO, DONG XUEJUN, ELLSWORTH DAVID, VAN GOETHEM DAVINA, JENSEN ANNA M., LAW BEVERLY E., LOOS RODOLFO, MARTINS SAMUEL C. VITOR, NORBY RICHARD J., WARREN JEFFREY, WESTON DAVID, WINTER KLAUS
Plant, Cell & Environment. 2014 37(4). p.978
Coupled response of stomatal and mesophyll conductance to light enhances photosynthesis of shade leaves under sunflecks
Campany Courtney E., Tjoelker Mark G., von Caemmerer Susanne, Duursma Remko A.
Plant, Cell & Environment. 2016 39(12). p.2762
Effects of mesophyll conductance on vegetation responses to elevated CO2 concentrations in a land surface model
Knauer Jürgen, Zaehle Sönke, De Kauwe Martin G., Bahar Nur H. A., Evans John R., Medlyn Belinda E., Reichstein Markus, Werner Christiane
Global Change Biology. 2019 25(5). p.1820
Leaf anatomy does not explain apparent short‐term responses of mesophyll conductance to light and CO2 in tobacco
Carriquí Marc, Douthe Cyril, Molins Arántzazu, Flexas Jaume
Physiologia Plantarum. 2019 165(3). p.604
Components of mesophyll resistance and their environmental responses: A theoretical modelling analysis
Xiao Yi, Zhu Xin‐Guang
Plant, Cell & Environment. 2017 40(11). p.2729
Plant Respiration: Metabolic Fluxes and Carbon Balance (2017)
Barbour Margaret M., Ryazanova Svetlana, Tcherkez Guillaume
Using photorespiratory oxygen response to analyse leaf mesophyll resistance
Yin Xinyou, van der Putten Peter E. L., Belay Daniel, Struik Paul C.
Photosynthesis Research. 2020 144(1). p.85
Development of Modified Farquhar–von Caemmerer–Berry Model Describing Photodamage of Photosynthetic Electron Transport in C3 Plants under Different Temperatures
Ratnitsyna Daria, Yudina Lyubov, Sukhova Ekaterina, Sukhov Vladimir
Plants. 2023 12(18). p.3211
The response of mesophyll conductance to nitrogen and water availability differs between wheat genotypes
Barbour Margaret M., Kaiser Brent N.
Plant Science. 2016 251 p.119
Scaling Up from Leaf to Whole-Plant Level for Water Use Efficiency Estimates Based on Stomatal and Mesophyll Behaviour in Platycladus orientalis
Zhang Yonge, Liu Bing, Jia Guodong, Yu Xinxiao, Zhang Xiaoming, Yin Xiaolin, Zhao Yang, Wang Zhaoyan, Cheng Chen, Wang Yousheng, Xin Yan
Water. 2022 14(2). p.263
The role of mesophyll conductance in the economics of nitrogen and water use in photosynthesis
Buckley Thomas N., Warren Charles R.
Photosynthesis Research. 2014 119(1-2). p.77
Stomatal conductance and intrinsic water use efficiency in the drought year 2003: a case study of European beech
Hentschel Rainer, Hommel Robert, Poschenrieder Werner, Grote Rüdiger, Holst Jutta, Biernath Christian, Gessler Arthur, Priesack Eckart
Trees. 2016 30(1). p.153
The Leaf: A Platform for Performing Photosynthesis (2018)
Flexas Jaume, Cano Francisco Javier, Carriquí Marc, Coopman Rafael E., Mizokami Yusuke, Tholen Danny, Xiong Dongliang
Drought response of mesophyll conductance in forest understory species - impacts on water-use efficiency and interactions with leaf water movement
Hommel Robert, Siegwolf Rolf, Saurer Matthias, Farquhar Graham D., Kayler Zachary, Ferrio Juan Pedro, Gessler Arthur
Physiologia Plantarum. 2014 152(1). p.98
Leaf Photosynthesis and Its Genetic Improvement from the Perspective of Energy Flow and CO2Diffusion
Tanaka Yu, Kumagai Etsushi, Tazoe Youshi, Adachi Shunsuke, Homma Koki
Plant Production Science. 2014 17(2). p.111
Artefactual responses of mesophyll conductance to CO2 and irradiance estimated with the variable J and online isotope discrimination methods
GU LIANHONG, SUN YING
Plant, Cell & Environment. 2014 37(5). p.1231
Can variation in canopy $$\delta$$13C be attributed to changes in tree height? An investigation of three conifer species
Koyama Akihiro, Schotzko Alisa D., Schedlbauer Jessica L., Pangle Robert, Kavanagh Kathleen L.
Trees. 2021 35(3). p.731
Photosynthesis, Respiration, and Climate Change (2021)
Nadal Miquel, Carriquí Marc, Flexas Jaume
Implications of the mesophyll conductance to CO2 for photosynthesis and water‐use efficiency during long‐term water stress and recovery in two contrasting Eucalyptus species
CANO F. JAVIER, LÓPEZ ROSANA, WARREN CHARLES R.
Plant, Cell & Environment. 2014 37(11). p.2470
Mesophyll conductance in land surface models: effects on photosynthesis and transpiration
Knauer Jürgen, Zaehle Sönke, De Kauwe Martin G., Haverd Vanessa, Reichstein Markus, Sun Ying
The Plant Journal. 2020 101(4). p.858
The Light Dependence of Mesophyll Conductance and Relative Limitations on Photosynthesis in Evergreen Sclerophyllous Rhododendron Species
Yang Ying-Jie, Hu Hong, Huang Wei
Plants. 2020 9(11). p.1536
Mesophyll conductance in Zea mays responds transiently to CO2 availability: implications for transpiration efficiency in C4 crops
Kolbe Allison R., Cousins Asaph B.
New Phytologist. 2018 217(4). p.1463
The evolution of diffusive and biochemical capacities for photosynthesis was predominantly shaped by [CO2] with a smaller contribution from [O2]
Haworth Matthew, Marino Giovanni, Loreto Francesco, Centritto Mauro
Science of The Total Environment. 2022 840 p.156606
Temperature response of carbon isotope discrimination and mesophyll conductance in tobacco
EVANS JOHN R., VON CAEMMERER SUSANNE
Plant, Cell & Environment. 2013 36(4). p.745
Variable mesophyll conductance revisited: theoretical background and experimental implications
THOLEN DANNY, ETHIER GILBERT, GENTY BERNARD, PEPIN STEEVE, ZHU XIN‐GUANG
Plant, Cell & Environment. 2012 35(12). p.2087
Effects of leaf temperature on initial stomatal opening and their roles in overall and biochemical photosynthetic induction
Wachendorf Magnus, Küppers Manfred
Trees. 2017 31(5). p.1667
Stable isotopes in tree rings: towards a mechanistic understanding of isotope fractionation and mixing processes from the leaves to the wood
Gessler A., Ferrio J. P., Hommel R., Treydte K., Werner R. A., Monson R. K.
Tree Physiology. 2014 34(8). p.796
Estimating stomatal and biochemical limitations during photosynthetic induction
Deans Ross M., Farquhar Graham D., Busch Florian A.
Plant, Cell & Environment. 2019 42(12). p.3227
Mesophyll conductance: internal insights of leaf carbon exchange
GRIFFITHS HOWARD, HELLIKER BRENT R.
Plant, Cell & Environment. 2013 36(4). p.733
Mesophyll conductance: walls, membranes and spatial complexity
Evans John R.
New Phytologist. 2021 229(4). p.1864
An introductory guide to gas exchange analysis of photosynthesis and its application to plant phenotyping and precision irrigation to enhance water use efficiency
Haworth Matthew, Marino Giovanni, Centritto Mauro
Journal of Water and Climate Change. 2018 9(4). p.786
Improved method for measuring the apparent CO2 photocompensation point resolves the impact of multiple internal conductances to CO2 to net gas exchange
Walker Berkley J., Ort Donald R.
Plant, Cell & Environment. 2015 38(11). p.2462
The effect of initial stomatal opening on the dynamics of biochemical and overall photosynthetic induction
Wachendorf Magnus, Küppers Manfred
Trees. 2017 31(3). p.981
Calibration matters: On the procedure of using the chlorophyll fluorescence method to estimate mesophyll conductance
van der Putten Peter E.L., Yin Xinyou, Struik Paul C.
Journal of Plant Physiology. 2018 220 p.167
Mesophyll conductance exerts a significant limitation on photosynthesis during light induction
Liu Tao, Barbour Margaret M., Yu Dashi, Rao Sen, Song Xin
New Phytologist. 2022 233(1). p.360
Simple generalisation of a mesophyll resistance model for various intracellular arrangements of chloroplasts and mitochondria in C3 leaves
Yin Xinyou, Struik Paul C.
Photosynthesis Research. 2017 132(2). p.211
The response of mesophyll conductance to short- and long-term environmental conditions in chickpea genotypes
Shrestha Arjina, Buckley Thomas N, Lockhart Erin L, Barbour Margaret M
AoB PLANTS. 2019 11(1).
An improved isotopic method for partitioning net ecosystem–atmosphere CO2 exchange
Wehr R., Saleska S.R.
Agricultural and Forest Meteorology. 2015 214-215 p.515
Cell wall thickness and composition are involved in photosynthetic limitation
Flexas Jaume, Clemente-Moreno María J, Bota Josefina, Brodribb Tim J, Gago Jorge, Mizokami Yusuke, Nadal Miquel, Perera-Castro Alicia V, Roig-Oliver Margalida, Sugiura Daisuke, Xiong Dongliang, Carriquí Marc, Manavella Pablo
Journal of Experimental Botany. 2021 72(11). p.3971
A Comparison of the Variable J and Carbon-Isotopic Composition of Sugars Methods to Assess Mesophyll Conductance from the Leaf to the Canopy Scale in Drought-Stressed Cherry
Marino Giovanni, Haworth Matthew, Scartazza Andrea, Tognetti Roberto, Centritto Mauro
International Journal of Molecular Sciences. 2020 21(4). p.1222

Committee on Publication Ethics


Abstract Supplementary MaterialSupplementary Material (92 KB) Export Citation Get Permission